Logo Search packages:      
Sourcecode: hdf5 version File versions

dtypes.c

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by the Board of Trustees of the University of Illinois.         *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the files COPYING and Copyright.html.  COPYING can be found at the root   *
 * of the source code distribution tree; Copyright.html can be found at the  *
 * root level of an installed copy of the electronic HDF5 document set and   *
 * is linked from the top-level documents page.  It can also be found at     *
 * http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html.  If you do not have     *
 * access to either file, you may request a copy from hdfhelp@ncsa.uiuc.edu. *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
 * Programmer:  Robb Matzke <matzke@llnl.gov>
 *              Tuesday, December  9, 1997
 *
 * Purpose:     Tests the data type interface (H5T)
 */

#include <math.h>
#include <time.h>
#include "h5test.h"

/* Number of times to run each test */
#define NTESTS    1

/* Number of elements in each test */
#define NTESTELEM 100000

/* Define if you want to see a count of overflows */
#undef SHOW_OVERFLOWS

/* Epsilon for floating-point comparisons */
#define FP_EPSILON 0.000001

/*
 * Offset from alinged memory returned by malloc().  This can be used to test
 * that type conversions handle non-aligned buffers correctly.
 */
#define ALIGNMENT 1

/*
 * Define if you want to test alignment code on a machine that doesn't
 * normally require alignment. When set, all native data types must be aligned
 * on a byte boundary equal to the data size.
 */
#define TEST_ALIGNMENT

/* Alignment test stuff */
#ifdef TEST_ALIGNMENT
#define H5T_PACKAGE
#include "H5Tpkg.h"
#endif
#define SET_ALIGNMENT(TYPE,VAL) \
    H5T_NATIVE_##TYPE##_ALIGN_g=MAX(H5T_NATIVE_##TYPE##_ALIGN_g, VAL)

const char *FILENAME[] = {
    "dtypes1",
    "dtypes2",
    "dtypes3",
    NULL
};

typedef struct complex_t {
    double                  re;
    double                  im;
} complex_t;

/*
 * Count up or down depending on whether the machine is big endian or little
 * endian.  If local variable `endian' is H5T_ORDER_BE then the result will
 * be I, otherwise the result will be Z-(I+1).
 */
#define ENDIAN(Z,I)     (H5T_ORDER_BE==endian?(I):(Z)-((I)+1))


typedef enum flt_t {
    FLT_FLOAT, FLT_DOUBLE, FLT_LDOUBLE, FLT_OTHER
} flt_t;

typedef enum int_t {
    INT_CHAR, INT_UCHAR, INT_SHORT, INT_USHORT, INT_INT, INT_UINT,
    INT_LONG, INT_ULONG, INT_LLONG, INT_ULLONG, INT_OTHER
} int_t;

/* Count the number of overflows */
#ifdef SHOW_OVERFLOWS
static int noverflows_g = 0;
#endif

/* Skip overflow tests if non-zero */
static int skip_overflow_tests_g = 0;

/* Don't use hardware conversions if set */
static int without_hardware_g = 0;

/* Count opaque conversions */
static int num_opaque_conversions_g = 0;

/*
 * Although we check whether a floating point overflow generates a SIGFPE and
 * turn off overflow tests in that case, it might still be possible for an
 * overflow condition to occur.  Once a SIGFPE is raised the program cannot
 * be allowed to continue (cf. Posix signals) so in order to recover from a
 * SIGFPE we run tests that might generate one in a child process.
 */
#if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID)
#   define HANDLE_SIGFPE
#endif

/* Allocates memory aligned on a certain boundary. */
#define aligned_malloc(Z)     ((void*)((char*)malloc(ALIGNMENT+Z)+ALIGNMENT))
#define aligned_free(M)       free((char*)(M)-ALIGNMENT)

void some_dummy_func(float x);


/*-------------------------------------------------------------------------
 * Function:      fpe_handler
 *
 * Purpose: Exit with 255
 *
 * Return:  void
 *
 * Programmer:    Robb Matzke
 *              Monday, July  6, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static void
fpe_handler(int UNUSED signo)
{
    SKIPPED();
    puts("    Test skipped due to SIGFPE.");
#ifndef HANDLE_SIGFPE
    puts("    Remaining tests could not be run.");
    puts("    Please turn off SIGFPE on overflows and try again.");
#endif
    exit(255);
}


/*-------------------------------------------------------------------------
 * Function:      overflow_handler
 *
 * Purpose: Gets called for all data type conversion overflows.
 *
 * Return:  Success:    0
 *
 *          Failure:    -1
 *
 * Programmer:    Robb Matzke
 *              Tuesday, July  7, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
#ifdef SHOW_OVERFLOWS
static herr_t
overflow_handler(hid_t UNUSED src_id, hid_t UNUSED dst_id,
             void UNUSED *src_buf, void UNUSED *dst_buf)
{
    noverflows_g++;
    return -1;
}
#endif


/*-------------------------------------------------------------------------
 * Function:      some_dummy_func
 *
 * Purpose: A dummy function to help check for overflow.
 *
 * Note:    DO NOT DECLARE THIS FUNCTION STATIC OR THE COMPILER MIGHT
 *          PROMOTE ARGUMENT `x' TO DOUBLE AND DEFEAT THE OVERFLOW
 *          CHECKING.
 *
 * Return:  void
 *
 * Programmer:    Robb Matzke
 *              Tuesday, July 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
void
some_dummy_func(float x)
{
    char    s[128];
    sprintf(s, "%g", x);
}


/*-------------------------------------------------------------------------
 * Function:      generates_sigfpe
 *
 * Purpose: Determines if SIGFPE is generated from overflows.  We must be
 *          able to fork() and waitpid() in order for this test to work
 *          properly.  Sets skip_overflow_tests_g to non-zero if they
 *          would generate SIGBUS, zero otherwise.
 *
 * Programmer:    Robb Matzke
 *              Tuesday, July 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static void
generates_sigfpe(void)
{
#if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID)
    pid_t   pid;
    int           status;
    size_t  i, j;
    double  d;
    unsigned char *dp = (unsigned char*)&d;
    float   f;

    fflush(stdout);
    fflush(stderr);
    if ((pid=fork())<0) {
      perror("fork");
      exit(1);
    } else if (0==pid) {
      for (i=0; i<2000; i++) {
          for (j=0; j<sizeof(double); j++) dp[j] = rand();
          f = (float)d;
          some_dummy_func((float)f);
      }
      exit(0);
    }
    
    while (pid!=waitpid(pid, &status, 0)) /*void*/;
    if (WIFEXITED(status) && 0==WEXITSTATUS(status)) {
      puts("Floating-point overflow cases will be tested.");
      skip_overflow_tests_g = FALSE;
    } else if (WIFSIGNALED(status) && SIGFPE==WTERMSIG(status)) {
      puts("Floating-point overflow cases cannot be safely tested.");
      skip_overflow_tests_g = TRUE;
      /* delete the core dump file that SIGFPE may have created */
      unlink("core");
    }
#else
    puts("Cannot determine if floating-point overflows generate a SIGFPE;");
    puts("assuming yes.");
    puts("Overflow cases will not be tested.");
    skip_overflow_tests_g = TRUE;
#endif
}


/*-------------------------------------------------------------------------
 * Function:      reset_hdf5
 *
 * Purpose: Reset the hdf5 library.  This causes statistics to be printed
 *          and counters to be reset.
 *
 * Return:  void
 *
 * Programmer:    Robb Matzke
 *              Monday, November 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static void
reset_hdf5(void)
{
    h5_reset();
#ifdef SHOW_OVERFLOWS
    H5Tset_overflow(overflow_handler);
#endif
    if (without_hardware_g) h5_no_hwconv();
#ifdef TEST_ALIGNMENT
    SET_ALIGNMENT(SCHAR,   H5_SIZEOF_CHAR);
    SET_ALIGNMENT(UCHAR,   H5_SIZEOF_CHAR);
    SET_ALIGNMENT(SHORT,   H5_SIZEOF_SHORT);
    SET_ALIGNMENT(USHORT,  H5_SIZEOF_SHORT);
    SET_ALIGNMENT(INT,     H5_SIZEOF_INT);
    SET_ALIGNMENT(UINT,    H5_SIZEOF_INT);
    SET_ALIGNMENT(LONG,    H5_SIZEOF_LONG);
    SET_ALIGNMENT(ULONG,   H5_SIZEOF_LONG);
    SET_ALIGNMENT(LLONG,   H5_SIZEOF_LONG_LONG);
    SET_ALIGNMENT(ULLONG,  H5_SIZEOF_LONG_LONG);
    SET_ALIGNMENT(FLOAT,   H5_SIZEOF_FLOAT);
    SET_ALIGNMENT(DOUBLE,  H5_SIZEOF_DOUBLE);
    SET_ALIGNMENT(LDOUBLE, H5_SIZEOF_LONG_DOUBLE);
#endif

}


/*-------------------------------------------------------------------------
 * Function:    test_classes
 *
 * Purpose:     Test type classes
 *
 * Return:      Success:        0
 *
 *              Failure:        number of errors
 *
 * Programmer:  Robb Matzke
 *              Tuesday, December  9, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_classes(void)
{
    H5T_class_t         tcls;
    
    TESTING("H5Tget_class()");

    if ((tcls=H5Tget_class(H5T_NATIVE_INT))<0) goto error;
    if (H5T_INTEGER!=tcls) {
      H5_FAILED();
        puts("    Invalid type class for H5T_NATIVE_INT");
        goto error;
    }
    if ((tcls=H5Tget_class(H5T_NATIVE_DOUBLE))<0) goto error;
    if (H5T_FLOAT!=tcls) {
      H5_FAILED();
      puts("    Invalid type class for H5T_NATIVE_DOUBLE");
        goto error;
    }
    PASSED();
    return 0;

  error:
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:    test_copy
 *
 * Purpose:     Are we able to copy a data type?
 *
 * Return:      Success:        0
 *
 *              Failure:        number of errors
 *
 * Programmer:  Robb Matzke
 *              Tuesday, December  9, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_copy(void)
{
    hid_t               a_copy;
    herr_t        status;

    TESTING("H5Tcopy()");

    if ((a_copy = H5Tcopy(H5T_NATIVE_SHORT)) < 0) goto error;
    if (H5Tclose(a_copy) < 0) goto error;

    /* We should not be able to close a built-in byte */
    H5E_BEGIN_TRY {
      status = H5Tclose (H5T_NATIVE_SCHAR);
    } H5E_END_TRY;
    if (status>=0) {
      H5_FAILED();
      puts ("    Should not be able to close a predefined type!");
      goto error;
    }

    PASSED();
    return 0;

  error:
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:    test_detect
 *
 * Purpose:     Are we able to detect datatype classes correctly?  (Especially
 *              in nested types)
 *
 * Return:      Success:        0
 *
 *              Failure:        number of errors
 *
 * Programmer:  Quincey Koziol
 *              Saturday, August 30, 2003
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_detect(void)
{
    struct atomic {     /* Struct with atomic fields */
        int i;
        float f;
        char c;
        double d;
        short s;
    };
    struct complex {    /* Struct with complex fields */
        hobj_ref_t arr_r[3][3];
        int i;
        hvl_t vl_f;
        char c;
        short s;
    };
    hid_t atom_cmpd_id; /* Atomic Compound datatype */
    hid_t atom_arr_id;  /* Atomic Array datatype */
    hid_t atom_vl_id;   /* Atomic VL datatype */
    hid_t cplx_cmpd_id; /* Complex Compound datatype */
    int rank=2;         /* Rank for array datatype */
    hsize_t dims[2]={3,3};      /* Dimensions for array datatype */

    TESTING("H5Tdetect_class()");

    /* Native integers should be in the integer class */
    if(H5Tdetect_class(H5T_NATIVE_INT,H5T_INTEGER)!=TRUE) TEST_ERROR

    /* Native integers should _not_ be in other classes */
    if(H5Tdetect_class(H5T_NATIVE_INT,H5T_FLOAT)!=FALSE) TEST_ERROR
    if(H5Tdetect_class(H5T_NATIVE_INT,H5T_ARRAY)!=FALSE) TEST_ERROR
    if(H5Tdetect_class(H5T_NATIVE_INT,H5T_ENUM)!=FALSE) TEST_ERROR

    /* Create a compound datatype and insert some atomic types */
    if ((atom_cmpd_id = H5Tcreate(H5T_COMPOUND, sizeof(struct atomic)))<0) TEST_ERROR
    if (H5Tinsert(atom_cmpd_id, "i", HOFFSET(struct atomic, i), H5T_NATIVE_INT)<0) TEST_ERROR
    if (H5Tinsert(atom_cmpd_id, "f", HOFFSET(struct atomic, f), H5T_NATIVE_FLOAT)<0) TEST_ERROR
    if (H5Tinsert(atom_cmpd_id, "c", HOFFSET(struct atomic, c), H5T_NATIVE_CHAR)<0) TEST_ERROR
    if (H5Tinsert(atom_cmpd_id, "d", HOFFSET(struct atomic, d), H5T_NATIVE_DOUBLE)<0) TEST_ERROR
    if (H5Tinsert(atom_cmpd_id, "s", HOFFSET(struct atomic, s), H5T_NATIVE_SHORT)<0) TEST_ERROR

    /* Make certain that the correct classes can be detected */
    if(H5Tdetect_class(atom_cmpd_id,H5T_COMPOUND)!=TRUE) TEST_ERROR
    if(H5Tdetect_class(atom_cmpd_id,H5T_INTEGER)!=TRUE) TEST_ERROR
    if(H5Tdetect_class(atom_cmpd_id,H5T_FLOAT)!=TRUE) TEST_ERROR

    /* Make certain that an incorrect class is not detected */
    if(H5Tdetect_class(atom_cmpd_id,H5T_VLEN)!=FALSE) TEST_ERROR

    /* Create an array datatype with an atomic base type */
    if((atom_arr_id=H5Tarray_create(H5T_STD_REF_OBJ, rank, dims, NULL))<0) TEST_ERROR

    /* Make certain that the correct classes can be detected */
    if(H5Tdetect_class(atom_arr_id,H5T_ARRAY)!=TRUE) TEST_ERROR
    if(H5Tdetect_class(atom_arr_id,H5T_REFERENCE)!=TRUE) TEST_ERROR

    /* Make certain that an incorrect class is not detected */
    if(H5Tdetect_class(atom_arr_id,H5T_VLEN)!=FALSE) TEST_ERROR
    if(H5Tdetect_class(atom_arr_id,H5T_FLOAT)!=FALSE) TEST_ERROR
    if(H5Tdetect_class(atom_arr_id,H5T_INTEGER)!=FALSE) TEST_ERROR

    /* Create a VL datatype with an atomic base type */
    if((atom_vl_id=H5Tvlen_create(H5T_NATIVE_FLOAT))<0) TEST_ERROR

    /* Make certain that the correct classes can be detected */
    if(H5Tdetect_class(atom_vl_id,H5T_VLEN)!=TRUE) TEST_ERROR
    if(H5Tdetect_class(atom_vl_id,H5T_FLOAT)!=TRUE) TEST_ERROR

    /* Make certain that an incorrect class is not detected */
    if(H5Tdetect_class(atom_vl_id,H5T_COMPOUND)!=FALSE) TEST_ERROR
    if(H5Tdetect_class(atom_vl_id,H5T_INTEGER)!=FALSE) TEST_ERROR

    /* Create a compound datatype and insert some atomic types */
    if ((cplx_cmpd_id = H5Tcreate(H5T_COMPOUND, sizeof(struct complex)))<0) TEST_ERROR
    if (H5Tinsert(cplx_cmpd_id, "arr_r", HOFFSET(struct complex, arr_r), atom_arr_id)<0) TEST_ERROR
    if (H5Tinsert(cplx_cmpd_id, "i", HOFFSET(struct complex, i), H5T_NATIVE_INT)<0) TEST_ERROR
    if (H5Tinsert(cplx_cmpd_id, "vl_f", HOFFSET(struct complex, vl_f), atom_vl_id)<0) TEST_ERROR
    if (H5Tinsert(cplx_cmpd_id, "c", HOFFSET(struct complex, c), H5T_NATIVE_CHAR)<0) TEST_ERROR
    if (H5Tinsert(cplx_cmpd_id, "s", HOFFSET(struct complex, s), H5T_NATIVE_SHORT)<0) TEST_ERROR

    /* Make certain that the correct classes can be detected */
    if(H5Tdetect_class(cplx_cmpd_id,H5T_COMPOUND)!=TRUE) TEST_ERROR
    if(H5Tdetect_class(cplx_cmpd_id,H5T_ARRAY)!=TRUE) TEST_ERROR
    if(H5Tdetect_class(cplx_cmpd_id,H5T_REFERENCE)!=TRUE) TEST_ERROR
    if(H5Tdetect_class(cplx_cmpd_id,H5T_INTEGER)!=TRUE) TEST_ERROR
    if(H5Tdetect_class(cplx_cmpd_id,H5T_FLOAT)!=TRUE) TEST_ERROR
    if(H5Tdetect_class(cplx_cmpd_id,H5T_VLEN)!=TRUE) TEST_ERROR

    /* Make certain that an incorrect class is not detected */
    if(H5Tdetect_class(cplx_cmpd_id,H5T_TIME)!=FALSE) TEST_ERROR
    if(H5Tdetect_class(cplx_cmpd_id,H5T_ENUM)!=FALSE) TEST_ERROR
    if(H5Tdetect_class(cplx_cmpd_id,H5T_STRING)!=FALSE) TEST_ERROR

    /* Close complex compound datatype */
    if(H5Tclose(cplx_cmpd_id)<0) TEST_ERROR

    /* Close atomic VL datatype */
    if(H5Tclose(atom_vl_id)<0) TEST_ERROR

    /* Close atomic array datatype */
    if(H5Tclose(atom_arr_id)<0) TEST_ERROR

    /* Close atomic compound datatype */
    if(H5Tclose(atom_cmpd_id)<0) TEST_ERROR

    PASSED();
    return 0;

error:
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:    test_compound_1
 *
 * Purpose:     Tests various things about compound data types.
 *
 * Return:      Success:        0
 *
 *              Failure:        number of errors
 *
 * Programmer:  Robb Matzke
 *              Wednesday, January  7, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_compound_1(void)
{
    complex_t               tmp;
    hid_t                   complex_id;
    herr_t ret;

    TESTING("compound data types");

    /* Create the empty type */
    if ((complex_id = H5Tcreate(H5T_COMPOUND, sizeof tmp))<0) goto error;

    /* Attempt to add the new compound datatype as a field within itself */
    H5E_BEGIN_TRY {
        ret=H5Tinsert(complex_id, "compound", 0, complex_id);
    } H5E_END_TRY;
    if (ret>=0) {
        H5_FAILED();
        printf("Inserted compound datatype into itself?\n");
        goto error;
    } /* end if */

    /* Add a couple fields */
    if (H5Tinsert(complex_id, "real", HOFFSET(complex_t, re),
              H5T_NATIVE_DOUBLE)<0) goto error;
    if (H5Tinsert(complex_id, "imaginary", HOFFSET(complex_t, im),
              H5T_NATIVE_DOUBLE)<0) goto error;

    if (H5Tclose (complex_id)<0) goto error;
    PASSED();
    return 0;

  error:
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:      test_compound_2
 *
 * Purpose: Tests a compound type conversion where the source and
 *          destination are the same except for the order of the
 *          elements.
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Thursday, June 17, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_compound_2(void)
{
    struct st {
      int a, b, c[4], d, e;
    } *s_ptr;
    struct dt {
      int e, d, c[4], b, a;
    } *d_ptr;

    const int           nelmts = NTESTELEM;
    const hsize_t four = 4;
    unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
    hid_t         st=-1, dt=-1;
    hid_t       array_dt;
    int                 i;

    TESTING("compound element reordering");

    /* Sizes should be the same, but be careful just in case */
    buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
    bkg = malloc(nelmts * sizeof(struct dt));
    orig = malloc(nelmts * sizeof(struct st));
    for (i=0; i<nelmts; i++) {
      s_ptr = ((struct st*)orig) + i;
      s_ptr->a    = i*8+0;
      s_ptr->b    = i*8+1;
      s_ptr->c[0] = i*8+2;
      s_ptr->c[1] = i*8+3;
      s_ptr->c[2] = i*8+4;
      s_ptr->c[3] = i*8+5;
      s_ptr->d    = i*8+6;
      s_ptr->e    = i*8+7;
    }
    HDmemcpy(buf, orig, nelmts*sizeof(struct st));

    /* Build hdf5 datatypes */
    array_dt=H5Tarray_create(H5T_NATIVE_INT,1, &four, NULL);
    if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
            H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
            H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
            H5Tinsert(st, "c", HOFFSET(struct st, c), array_dt)<0 ||
            H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
            H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
        goto error;
    H5Tclose(array_dt);
    
    array_dt=H5Tarray_create(H5T_NATIVE_INT,1, &four, NULL);
    if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
            H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
            H5Tinsert(dt, "b", HOFFSET(struct dt, b), H5T_NATIVE_INT)<0 ||
            H5Tinsert(dt, "c", HOFFSET(struct dt, c), array_dt)<0 ||
            H5Tinsert(dt, "d", HOFFSET(struct dt, d), H5T_NATIVE_INT)<0 ||
            H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
        goto error;
    H5Tclose(array_dt);
    
    /* Perform the conversion */
    if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0) goto error;

    /* Compare results */
    for (i=0; i<nelmts; i++) {
      s_ptr = ((struct st*)orig) + i;
      d_ptr = ((struct dt*)buf)  + i;
      if (s_ptr->a    != d_ptr->a    ||
          s_ptr->b    != d_ptr->b    ||
          s_ptr->c[0] != d_ptr->c[0] ||
          s_ptr->c[1] != d_ptr->c[1] ||
          s_ptr->c[2] != d_ptr->c[2] ||
          s_ptr->c[3] != d_ptr->c[3] ||
          s_ptr->d    != d_ptr->d    ||
          s_ptr->e    != d_ptr->e) {
          H5_FAILED();
          printf("    i=%d\n", i);
          printf("    src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
               s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
               s_ptr->c[3], s_ptr->d, s_ptr->e);
          printf("    dst={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
               d_ptr->a, d_ptr->b, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
               d_ptr->c[3], d_ptr->d, d_ptr->e);
          goto error;
      }
    }
    
    /* Release resources */
    free(buf);
    free(bkg);
    free(orig);
    if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error;

    PASSED();
    reset_hdf5();
    return 0;

 error:
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:      test_compound_3
 *
 * Purpose: Tests compound conversions where the source and destination
 *          are the same except the destination is missing a couple
 *          members which appear in the source.
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Thursday, June 17, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_compound_3(void)
{
    struct st {
      int a, b, c[4], d, e;
    } *s_ptr;
    struct dt {
      int a,    c[4],    e;
    } *d_ptr;

    const int           nelmts = NTESTELEM;
    const hsize_t four = 4;
    unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
    hid_t         st=-1, dt=-1;
    hid_t       array_dt;
    int                 i;

    TESTING("compound subset conversions");

    /* Initialize */
    buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
    bkg = malloc(nelmts * sizeof(struct dt));
    orig = malloc(nelmts * sizeof(struct st));
    for (i=0; i<nelmts; i++) {
        s_ptr = ((struct st*)orig) + i;
        s_ptr->a    = i*8+0;
        s_ptr->b    = i*8+1;
        s_ptr->c[0] = i*8+2;
        s_ptr->c[1] = i*8+3;
        s_ptr->c[2] = i*8+4;
        s_ptr->c[3] = i*8+5;
        s_ptr->d    = i*8+6;
        s_ptr->e    = i*8+7;
    }
    HDmemcpy(buf, orig, nelmts*sizeof(struct st));

    /* Build hdf5 datatypes */
    array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
    if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
            H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
            H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
            H5Tinsert(st, "c", HOFFSET(struct st, c), array_dt)<0 ||
            H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
            H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
        goto error;
    H5Tclose(array_dt);
    
    array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
    if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
            H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
            H5Tinsert(dt, "c", HOFFSET(struct dt, c), array_dt)<0 ||
            H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
        goto error;
    H5Tclose(array_dt);
    
    /* Perform the conversion */
    if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0)
        goto error;

    /* Compare results */
    for (i=0; i<nelmts; i++) {
      s_ptr = ((struct st*)orig) + i;
      d_ptr = ((struct dt*)buf)  + i;
      if (s_ptr->a    != d_ptr->a    ||
          s_ptr->c[0] != d_ptr->c[0] ||
          s_ptr->c[1] != d_ptr->c[1] ||
          s_ptr->c[2] != d_ptr->c[2] ||
          s_ptr->c[3] != d_ptr->c[3] ||
          s_ptr->e    != d_ptr->e) {
          H5_FAILED();
          printf("    i=%d\n", i);
          printf("    src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
               s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
               s_ptr->c[3], s_ptr->d, s_ptr->e);
          printf("    dst={a=%d, c=[%d,%d,%d,%d], e=%d\n",
               d_ptr->a, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
               d_ptr->c[3], d_ptr->e);
          goto error;
      }
    }
    
    /* Release resources */
    free(buf);
    free(bkg);
    free(orig);
    if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error;

    PASSED();
    reset_hdf5();
    return 0;

 error:
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:      test_compound_4
 *
 * Purpose: Tests compound conversions when the destination has the same
 *          fields as the source but one or more of the fields are
 *          smaller.
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Thursday, June 17, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_compound_4(void)
{
    
    struct st {
      int a, b, c[4], d, e;
    } *s_ptr;
    struct dt {
      short b;
      int a, c[4];
      short d;
      int e;
    } *d_ptr;

    const int           nelmts = NTESTELEM;
    const hsize_t four = 4;
    unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
    hid_t         st=-1, dt=-1;
    hid_t       array_dt;
    int                 i;

    TESTING("compound element shrinking & reordering");

    /* Sizes should be the same, but be careful just in case */
    buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
    bkg = malloc(nelmts * sizeof(struct dt));
    orig = malloc(nelmts * sizeof(struct st));
    for (i=0; i<nelmts; i++) {
        s_ptr = ((struct st*)orig) + i;
        s_ptr->a    = i*8+0;
        s_ptr->b    = (i*8+1) & 0x7fff;
        s_ptr->c[0] = i*8+2;
        s_ptr->c[1] = i*8+3;
        s_ptr->c[2] = i*8+4;
        s_ptr->c[3] = i*8+5;
        s_ptr->d    = (i*8+6) & 0x7fff;
        s_ptr->e    = i*8+7;
    }
    HDmemcpy(buf, orig, nelmts*sizeof(struct st));

    /* Build hdf5 datatypes */
    array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
    if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
            H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 ||
            H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 ||
            H5Tinsert(st, "c", HOFFSET(struct st, c), array_dt)<0 ||
            H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 ||
            H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0)
        goto error;
    H5Tclose(array_dt);
    
    array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL);
    if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
            H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 ||
            H5Tinsert(dt, "b", HOFFSET(struct dt, b), H5T_NATIVE_SHORT)<0 ||
            H5Tinsert(dt, "c", HOFFSET(struct dt, c), array_dt)<0 ||
            H5Tinsert(dt, "d", HOFFSET(struct dt, d), H5T_NATIVE_SHORT)<0 ||
            H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0)
        goto error;
    H5Tclose(array_dt);
    
    /* Perform the conversion */
    if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0)
        goto error;

    /* Compare results */
    for (i=0; i<nelmts; i++) {
      s_ptr = ((struct st*)orig) + i;
      d_ptr = ((struct dt*)buf)  + i;
      if (s_ptr->a    != d_ptr->a    ||
          s_ptr->b    != d_ptr->b    ||
          s_ptr->c[0] != d_ptr->c[0] ||
          s_ptr->c[1] != d_ptr->c[1] ||
          s_ptr->c[2] != d_ptr->c[2] ||
          s_ptr->c[3] != d_ptr->c[3] ||
          s_ptr->d    != d_ptr->d    ||
          s_ptr->e    != d_ptr->e) {
          H5_FAILED();
          printf("    i=%d\n", i);
          printf("    src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
               s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2],
               s_ptr->c[3], s_ptr->d, s_ptr->e);
          printf("    dst={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n",
               d_ptr->a, d_ptr->b, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2],
               d_ptr->c[3], d_ptr->d, d_ptr->e);
          goto error;
      }
    }
    
    /* Release resources */
    free(buf);
    free(bkg);
    free(orig);
    if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error;

    PASSED();
    reset_hdf5();
    return 0;

 error:
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:      test_compound_5
 *
 * Purpose: Many versions of HDF5 have a bug in the optimized compound
 *              datatype conversion function, H5T_conv_struct_opt(), which
 *              is triggered when the top-level type contains a struct
 *              which must undergo a conversion.
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Thursday, June 17, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_compound_5(void)
{
    typedef struct {
        char    name[16];
        short   tdim;
        short   coll_ids[4];
    } src_type_t;

    typedef struct {
        char    name[16];
        short   tdim;
        int     coll_ids[4];
    } dst_type_t;

    hsize_t      dims[1] = {4};
    hid_t       src_type, dst_type, short_array, int_array, string;
    hid_t       array_dt;
    src_type_t  src[2] = {{"one", 102, {104, 105, 106, 107}},
                          {"two", 202, {204, 205, 206, 207}}};
    
    dst_type_t  *dst;
    void        *buf = calloc(2, sizeof(dst_type_t));
    void        *bkg = calloc(2, sizeof(dst_type_t));

#if 1
    TESTING("optimized struct converter");
#else
    /* Turn off optimized compound conversion function to work around
     * the problem. */
    TESTING("optimized struct converter bug workaround");
    H5Tunregister(H5T_PERS_DONTCARE, "struct(opt)", -1, -1, NULL);
#endif

    /* Build datatypes */
    short_array = H5Tcreate(H5T_COMPOUND, 4*sizeof(short));
    array_dt=H5Tarray_create(H5T_NATIVE_SHORT, 1, dims, NULL);
    H5Tinsert(short_array, "_", 0, array_dt);
    H5Tclose(array_dt);

    int_array   = H5Tcreate(H5T_COMPOUND, 4*sizeof(int));
    array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, dims, NULL);
    H5Tinsert(int_array, "_", 0, array_dt);
    H5Tclose(array_dt);

    string = H5Tcopy(H5T_C_S1);
    H5Tset_size(string, 16);

    src_type = H5Tcreate(H5T_COMPOUND, sizeof(src_type_t));
    H5Tinsert(src_type, "name",     HOFFSET(src_type_t, name),             string          );
    H5Tinsert(src_type, "tdim",     HOFFSET(src_type_t, tdim),             H5T_NATIVE_SHORT);
    H5Tinsert(src_type, "coll_ids", HOFFSET(src_type_t, coll_ids),         short_array     );

    dst_type = H5Tcreate(H5T_COMPOUND, sizeof(dst_type_t));
    H5Tinsert(dst_type, "name",     HOFFSET(dst_type_t, name),             string          );
    H5Tinsert(dst_type, "tdim",     HOFFSET(dst_type_t, tdim),             H5T_NATIVE_SHORT);
    H5Tinsert(dst_type, "coll_ids", HOFFSET(dst_type_t, coll_ids),         int_array       );

    /* Convert data */
    HDmemcpy(buf, src, sizeof(src));
    H5Tconvert(src_type, dst_type, (hsize_t)2, buf, bkg, H5P_DEFAULT);
    dst = (dst_type_t*)buf;

    /* Cleanup */
    H5Tclose(src_type);
    H5Tclose(dst_type);
    H5Tclose(string);
    H5Tclose(short_array);
    H5Tclose(int_array);

   
    
    /* Check results */
    if (HDmemcmp(src[1].name, dst[1].name, sizeof(src[1].name)) ||
        src[1].tdim!=dst[1].tdim ||
        src[1].coll_ids[0]!=dst[1].coll_ids[0] ||
        src[1].coll_ids[1]!=dst[1].coll_ids[1] ||
        src[1].coll_ids[2]!=dst[1].coll_ids[2] ||
        src[1].coll_ids[3]!=dst[1].coll_ids[3]) {
        H5_FAILED();
        return 1;
    }

    /* Free memory buffers */
    free(buf);
    free(bkg);
    PASSED();
    return 0;
}


/*-------------------------------------------------------------------------
 * Function:      test_compound_6
 *
 * Purpose: Tests compound conversions when the destination has the same
 *          fields as the source but one or more of the fields are
 *          larger.
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Quincey Koziol
 *              Wednesday, December 13, 2000
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_compound_6(void)
{
    
    struct st {
        short b;
        short d;
    } *s_ptr;
    struct dt {
        long b;
        long d;
    } *d_ptr;

    const int           nelmts = NTESTELEM;
    unsigned char *buf=NULL, *orig=NULL, *bkg=NULL;
    hid_t         st=-1, dt=-1;
    int                 i;

    TESTING("compound element growing");

    /* Sizes should be the same, but be careful just in case */
    buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt)));
    bkg = malloc(nelmts * sizeof(struct dt));
    orig = malloc(nelmts * sizeof(struct st));
    for (i=0; i<nelmts; i++) {
        s_ptr = ((struct st*)orig) + i;
        s_ptr->b    = (i*8+1) & 0x7fff;
        s_ptr->d    = (i*8+6) & 0x7fff;
    }
    HDmemcpy(buf, orig, nelmts*sizeof(struct st));

    /* Build hdf5 datatypes */
    if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 ||
            H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_SHORT)<0 ||
            H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_SHORT)<0) {
        H5_FAILED();
        goto error;
    }
    
    if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 ||
            H5Tinsert(dt, "b", HOFFSET(struct dt, b), H5T_NATIVE_LONG)<0 ||
            H5Tinsert(dt, "d", HOFFSET(struct dt, d), H5T_NATIVE_LONG)<0) {
        H5_FAILED();
        goto error;
    }
    
    /* Perform the conversion */
    if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0) {
        H5_FAILED();
        goto error;
    }

    /* Compare results */
    for (i=0; i<nelmts; i++) {
      s_ptr = ((struct st*)orig) + i;
      d_ptr = ((struct dt*)buf)  + i;
      if (s_ptr->b    != d_ptr->b    ||
          s_ptr->d    != d_ptr->d) {
          H5_FAILED();
          printf("    i=%d\n", i);
          printf("    src={b=%d, d=%d\n",
           (int)s_ptr->b, (int)s_ptr->d);
          printf("    dst={b=%ld, d=%ld\n",
           d_ptr->b, d_ptr->d);
          goto error;
      }
    }
    
    /* Release resources */
    free(buf);
    free(bkg);
    free(orig);
    if (H5Tclose(st)<0 || H5Tclose(dt)<0) {
        H5_FAILED();
        goto error;
    }

    PASSED();
    reset_hdf5();
    return 0;

 error:
    return 1;
}

/*-------------------------------------------------------------------------
 * Function:      test_compound_7
 *
 * Purpose: Tests inserting fields into compound datatypes when the field
 *              overlaps the end of the compound datatype.  Also, tests
 *              increasing compound type size. 
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Quincey Koziol
 *              Tuesday, December 18, 2001
 *
 * Modifications:
 *              The size of compound datatype can be expanded now.
 *              Raymond Lu
 *              Wednesday, September 10, 2003
 *
 *-------------------------------------------------------------------------
 */
static int
test_compound_7(void)
{
    struct s1 {
        int a;
        float b;
        long c;
    };

    struct s2 {
        int a;
        float b;
        long c;
        double d;
    };

    hid_t tid1,tid2;
    herr_t ret;

    TESTING("compound element insertion");

    if((tid1= H5Tcreate( H5T_COMPOUND, sizeof(struct s1)))<0) {
        H5_FAILED();
        printf("Can't create datatype!\n");
        goto error;
    } /* end if */

    if(H5Tinsert(tid1,"a",HOFFSET(struct s1,a),H5T_NATIVE_INT)<0) {
        H5_FAILED();
        printf("Can't insert field 'a'\n");
        goto error;
    } /* end if */

    if(H5Tinsert(tid1,"b",HOFFSET(struct s1,b),H5T_NATIVE_FLOAT)<0) {
        H5_FAILED();
        printf("Can't insert field 'b'\n");
        goto error;
    } /* end if */

    if(H5Tinsert(tid1,"c",HOFFSET(struct s1,c),H5T_NATIVE_LONG)<0) {
        H5_FAILED();
        printf("Can't insert field 'c'\n");
        goto error;
    } /* end if */

    if(H5Tget_size(tid1)!=sizeof(struct s1)) {
        H5_FAILED();
        printf("Incorrect size for struct 1\n");
        goto error;
    } /* end if */

    if((tid2= H5Tcopy(tid1))<0) {
        H5_FAILED();
        printf("Can't copy datatype\n");
        goto error;
    } /* end if */

    if(H5Tget_size(tid2)==sizeof(struct s2)) {
        H5_FAILED();
        printf("Incorrect size for struct 2\n");
        goto error;
    } /* end if */

    /* Should not be able to insert field past end of compound datatype */
    H5E_BEGIN_TRY {
        ret=H5Tinsert(tid2,"d",HOFFSET(struct s2,d),H5T_NATIVE_DOUBLE);
    } H5E_END_TRY;
    if(ret>=0) {
        H5_FAILED();
        printf("Inserted field 'd'?\n");
        goto error;
    } /* end if */

    /* Should not be able to shrink size of compound datatype */
    H5E_BEGIN_TRY {
        ret=H5Tset_size(tid2, sizeof(struct s1)/2);
    } H5E_END_TRY;
    if(ret>=0) {
        H5_FAILED();
        printf("Shrunk compound type?\n");
        goto error;
    } /* end if */

    /* Increase compound type size and try inserting field again */
    if(H5Tset_size(tid2, sizeof(struct s2))<0) {
        H5_FAILED();
        printf("Incorrect size for struct 2\n");
        goto error;
    } /* end if */

    if( H5Tinsert(tid2,"d",HOFFSET(struct s2,d),H5T_NATIVE_DOUBLE)<0) {
        H5_FAILED();
        printf("Can't expand compound datatype\n");
        goto error;
    } /* end if */

    if(H5Tget_size(tid2)!=sizeof(struct s2)) {
        H5_FAILED();
        printf("Incorrect size for struct 2\n");
        goto error;
    } /* end if */

    /* Release resources */
    if (H5Tclose(tid1)<0 || H5Tclose(tid2)<0) {
        H5_FAILED();
        printf("Can't close datatypes\n");
        goto error;
    } /* end if */

    PASSED();
    reset_hdf5();
    return 0;

 error:
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:    test_compound_8
 *
 * Purpose:     Tests H5Tpack for compound data types.
 *
 * Return:      Success:        0
 *
 *              Failure:        number of errors
 *
 * Programmer:  Robb Matzke
 *              Wednesday, January  7, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_compound_8(void)
{
    typedef struct s1 {
        char    a;
        int     b;
    } s1;

    typedef struct s2 {
        char    c;
        s1      d;
    } s2;

    hid_t  tid1, tid2, tid3;
    herr_t ret;

    TESTING("packing compound data types");
   
    /* Create first compound datatype */ 
    if((tid1 = H5Tcreate( H5T_COMPOUND, sizeof(struct s1)))<0) {
        H5_FAILED(); AT();
        printf("Can't create datatype!\n");
        goto error;
    } /* end if */

    if(H5Tinsert(tid1,"a",HOFFSET(struct s1,a),H5T_NATIVE_CHAR)<0) {
        H5_FAILED(); AT();
        printf("Can't insert field 'a'\n");
        goto error;
    } /* end if */

    if(H5Tinsert(tid1,"b",HOFFSET(struct s1,b),H5T_NATIVE_INT)<0) {
        H5_FAILED(); AT();
        printf("Can't insert field 'b'\n");
        goto error;
    } /* end if */

    /* Test H5Tpack for the first compound type */
    if(H5Tpack(tid1)<0) {
        H5_FAILED(); AT();
        printf("Can't pack the compound data type\n");
        goto error;
    } /* end if */

    if(H5Tlock(tid1)<0) {
        H5_FAILED(); AT();
        printf("Can't lock the compound data type\n");
        goto error;
    } /* end if */

    /* If the type is already packed, packing a locked type is OK */
    if(H5Tpack(tid1)<0) {
        H5_FAILED(); AT();
        printf("Can't pack the compound data type for second time\n");
        goto error;
    } /* end if */

    
    /* Create second compound datatype */
    if((tid2 = H5Tcreate( H5T_COMPOUND, sizeof(struct s2)))<0) {
        H5_FAILED(); AT();
        printf("Can't create datatype!\n");
        goto error;
    } /* end if */

    if(H5Tinsert(tid2,"c",HOFFSET(struct s2,c),H5T_NATIVE_CHAR)<0) {
        H5_FAILED(); AT();
        printf("Can't insert field 'c'\n");
        goto error;
    } /* end if */

    if(H5Tinsert(tid2,"d",HOFFSET(struct s2,d),tid1)<0) {
        H5_FAILED(); AT();
        printf("Can't insert field 'd'\n");
        goto error;
    } /* end if */

    /* Make a copy of the type for later */
    if((tid3=H5Tcopy(tid2))<0) {
        H5_FAILED(); AT();
        printf("Can't copy type #2\n");
        goto error;
    } /* end if */

    /* Test H5Tpack for the second compound type */
    if(H5Tpack(tid2)<0) {
        H5_FAILED(); AT();
        printf("Can't pack the compound data type\n");
        goto error;
    } /* end if */

    if(H5Tlock(tid2)<0) {
        H5_FAILED(); AT();
        printf("Can't lock the compound data type\n");
        goto error;
    } /* end if */

    /* If the type is already packed, packing a locked type is OK */
    if(H5Tpack(tid2)<0) {
        H5_FAILED(); AT();
        printf("Can't pack the compound data type for second time\n");
        goto error;
    } /* end if */

    /* Lock unpacked type */
    if(H5Tlock(tid3)<0) {
        H5_FAILED(); AT();
        printf("Can't lock the compound data type\n");
        goto error;
    } /* end if */

    /* If the type is not packed, packing a locked type shouldn't work */
    H5E_BEGIN_TRY {
        ret=H5Tpack(tid3);
    } H5E_END_TRY;
    if(ret>=0) {
        H5_FAILED(); AT();
        printf("Packing locked datatype worked?\n");
        goto error;
    } /* end if */

    /* Can't release resources - they are locked */

    PASSED();
    return 0;

  error:
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:    test_query
 *
 * Purpose:     Tests query functions of compound and enumeration types.
 *
 * Return:      Success:        0
 *      
 *              Failure:        number of errors
 *
 * Programmer:  Raymond Lu
 *              Thursday, April 4, 2002
 *  
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int 
test_query(void)
{
    struct s1 {
        int    a;
        float  b;
        long   c;
        double d;
    };
    hid_t       file=-1, tid1=-1, tid2=-1;
    char        filename[1024];
    char        compnd_type[]="Compound_type", enum_type[]="Enum_type";
    short       enum_val;

    TESTING("query functions of compound and enumeration types");

    /* Create File */
    h5_fixname(FILENAME[2], H5P_DEFAULT, filename, sizeof filename);
    if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0)
        goto error;

    /* Create a compound datatype */
    if((tid1=H5Tcreate(H5T_COMPOUND, sizeof(struct s1)))<0) { 
        H5_FAILED();
        printf("Can't create datatype!\n");
        goto error;
    } /* end if */
    if(H5Tinsert(tid1, "a", HOFFSET(struct s1, a), H5T_NATIVE_INT)<0) {
        H5_FAILED();
        printf("Can't insert field 'a'\n");
        goto error;
    } /* end if */
    if(H5Tinsert(tid1, "b", HOFFSET(struct s1, b), H5T_NATIVE_FLOAT)<0) {
        H5_FAILED();
        printf("Can't insert field 'b'\n");
        goto error;
    } /* end if */
    if(H5Tinsert(tid1, "c", HOFFSET(struct s1, c), H5T_NATIVE_LONG)<0) {
        H5_FAILED();
        printf("Can't insert field 'c'\n");
        goto error;
    } /* end if */
    if(H5Tinsert(tid1, "d", HOFFSET(struct s1, d), H5T_NATIVE_DOUBLE)<0) {
        H5_FAILED();
        printf("Can't insert field 'd'\n");
        goto error;
    } /* end if */

    /* Create a enumerate datatype */
    if((tid2=H5Tcreate(H5T_ENUM, sizeof(short)))<0) {
        H5_FAILED();
        printf("Can't create enumerate type\n");
        goto error;
    } /* end if */
    if(H5Tenum_insert(tid2, "RED", (enum_val=0,&enum_val))<0) {
        H5_FAILED();
        printf("Can't insert field into enumeration type\n");
        goto error;
    } /* end if */
    if(H5Tenum_insert(tid2, "GREEN", (enum_val=1,&enum_val))<0) {
        H5_FAILED();
        printf("Can't insert field into enumeration type\n");
        goto error;
    } /* end if */
    if(H5Tenum_insert(tid2, "BLUE", (enum_val=2,&enum_val))<0) {
        H5_FAILED();
        printf("Can't insert field into enumeration type\n");
        goto error;
    } /* end if */
    if(H5Tenum_insert(tid2, "ORANGE", (enum_val=3,&enum_val))<0) {
        H5_FAILED();
        printf("Can't insert field into enumeration type\n");
        goto error;
    } /* end if */
    if(H5Tenum_insert(tid2, "YELLOW", (enum_val=4,&enum_val))<0) {
        H5_FAILED();
        printf("Can't insert field into enumeration type\n");
        goto error;
    } /* end if */

    /* Query member number and member index by name, for compound type. */
    if(H5Tget_nmembers(tid1)!=4) {
        H5_FAILED();
        printf("Can't get member number\n");
        goto error;
    } /* end if */
    if(H5Tget_member_index(tid1, "c")!=2) {
        H5_FAILED();
        printf("Can't get correct index number\n");
        goto error;
    } /* end if */

    /* Query member number and member index by name, for enumeration type. */
    if(H5Tget_nmembers(tid2)!=5) {
        H5_FAILED();
        printf("Can't get member number\n");
        goto error;
    } /* end if */
    if(H5Tget_member_index(tid2, "ORANGE")!=3) {
        H5_FAILED();
        printf("Can't get correct index number\n");
        goto error;
    } /* end if */

    /* Commit compound datatype and close it */
    if(H5Tcommit(file, compnd_type, tid1)<0) {
        H5_FAILED();
        printf("Can't commit compound datatype\n");
        goto error;
    } /* end if */
    if(H5Tclose(tid1)<0) {
        H5_FAILED();
        printf("Can't close datatype\n");
        goto error;
    } /* end if */

    /* Commit enumeration datatype and close it */
    if(H5Tcommit(file, enum_type, tid2)<0) {
        H5_FAILED();
        printf("Can't commit compound datatype\n");
        goto error;
    } /* end if */
    if(H5Tclose(tid2)<0) {
        H5_FAILED();
        printf("Can't close datatype\n");
        goto error;
    } /* end if */

    /* Open the dataytpe for query */
    if((tid1=H5Topen(file, compnd_type))<0) {
        H5_FAILED();
        printf("Can't open datatype\n");
        goto error;
    } /* end if */
    if((tid2=H5Topen(file, enum_type))<0) {
        H5_FAILED();
        printf("Can't open datatype\n");
        goto error;
    } /* end if */

    /* Query member number and member index by name, for compound type */
    if(H5Tget_nmembers(tid1)!=4) {
        H5_FAILED();
        printf("Can't get member number\n");
        goto error;
    } /* end if */
    if(H5Tget_member_index(tid1, "c")!=2) {
        H5_FAILED();
        printf("Can't get correct index number\n");
        goto error;
    } /* end if */

    /* Query member number and member index by name, for enumeration type */
    if(H5Tget_nmembers(tid2)!=5) {
        H5_FAILED();
        printf("Can't get member number\n");
        goto error;
    } /* end if */
    if(H5Tget_member_index(tid2, "ORANGE")!=3) {
        H5_FAILED();
        printf("Can't get correct index number\n");
        goto error;
    } /* end if */

    /* Close data type and file */
    if(H5Tclose(tid1)<0) {
        H5_FAILED();
        printf("Can't close datatype\n");
        goto error;
    } /* end if */
    if(H5Tclose(tid2)<0) {
        H5_FAILED();
        printf("Can't close datatype\n");
        goto error;
    } /* end if */

    if(H5Fclose(file)<0) {
        H5_FAILED();
        printf("Can't close file\n");
        goto error;
    } /* end if */

    PASSED();
    return 0;

 error:
    H5E_BEGIN_TRY {
        H5Tclose (tid1);
        H5Tclose (tid2);
        H5Fclose (file);
    } H5E_END_TRY;
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:      test_transient
 *
 * Purpose: Tests transient data types.
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Thursday, June  4, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_transient (hid_t fapl)
{
    static hsize_t      ds_size[2] = {10, 20};
    hid_t         file=-1, type=-1, space=-1, dset=-1, t2=-1;
    char          filename[1024];
    herr_t        status;
    
    TESTING("transient data types");

    h5_fixname(FILENAME[0], fapl, filename, sizeof filename);
    if ((file=H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl))<0) {
      goto error;
    }
    if ((space = H5Screate_simple (2, ds_size, ds_size))<0) goto error;

    /* Predefined types cannot be modified or closed */
    H5E_BEGIN_TRY {
      status = H5Tset_precision (H5T_NATIVE_INT, 256);
    } H5E_END_TRY;
    if (status>=0) {
      H5_FAILED();
      puts ("    Predefined types should not be modifiable!");
      goto error;
    }
    H5E_BEGIN_TRY {
      status = H5Tclose (H5T_NATIVE_INT);
    } H5E_END_TRY;
    if (status>=0) {
      H5_FAILED();
      puts ("    Predefined types should not be closable!");
      goto error;
    }

    /* Copying a predefined type results in a modifiable copy */
    if ((type=H5Tcopy (H5T_NATIVE_INT))<0) goto error;
    if (H5Tset_precision (type, 256)<0) goto error;

    /* It should not be possible to create an attribute for a transient type */
    H5E_BEGIN_TRY {
      status = H5Acreate (type, "attr1", H5T_NATIVE_INT, space, H5P_DEFAULT);
    } H5E_END_TRY;
    if (status>=0) {
      H5_FAILED();
      puts ("    Attributes should not be allowed for transient types!");
      goto error;
    }

    /* Create a dataset from a transient data type */
    if (H5Tclose (type)<0) goto error;
    if ((type = H5Tcopy (H5T_NATIVE_INT))<0) goto error;
    if ((dset=H5Dcreate (file, "dset1", type, space, H5P_DEFAULT))<0)
      goto error;

    /* The type returned from a dataset should not be modifiable */
    if ((t2 = H5Dget_type (dset))<0) goto error;
    H5E_BEGIN_TRY {
      status = H5Tset_precision (t2, 256);
    } H5E_END_TRY;
    if (status>=0) {
      H5_FAILED();
      puts ("    Dataset data types should not be modifiable!");
      goto error;
    }
    if (H5Tclose (t2)<0) goto error;

    /*
     * Close the dataset and reopen it, testing that it's type is still
     * read-only.
     */
    if (H5Dclose (dset)<0) goto error;
    if ((dset=H5Dopen (file, "dset1"))<0) goto error;
    if ((t2 = H5Dget_type (dset))<0) goto error;
    H5E_BEGIN_TRY {
      status = H5Tset_precision (t2, 256);
    } H5E_END_TRY;
    if (status>=0) {
      H5_FAILED();
      puts ("    Dataset data types should not be modifiable!");
      goto error;
    }
    if (H5Tclose (t2)<0) goto error;

    /*
     * Get the dataset data type by applying H5Tcopy() to the dataset. The
     * result should be modifiable.
     */
    if ((t2=H5Tcopy (dset))<0) goto error;
    if (H5Tset_precision (t2, 256)<0) goto error;
    if (H5Tclose (t2)<0) goto error;
    

    H5Dclose (dset);
    H5Fclose (file);
    H5Tclose (type);
    H5Sclose (space);
    PASSED();
    return 0;

 error:
    H5E_BEGIN_TRY {
      H5Tclose (t2);
      H5Tclose (type);
      H5Sclose (space);
      H5Dclose (dset);
      H5Fclose (file);
    } H5E_END_TRY;
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:      test_named
 *
 * Purpose: Tests named data types.
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Monday, June  1, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_named (hid_t fapl)
{
    hid_t         file=-1, type=-1, space=-1, dset=-1, t2=-1, attr1=-1;
    herr_t        status;
    static hsize_t      ds_size[2] = {10, 20};
    hsize_t       i;
    unsigned            attr_data[10][20];
    char          filename[1024];
    
    TESTING("named data types");

    h5_fixname(FILENAME[1], fapl, filename, sizeof filename);
    if ((file=H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl))<0) {
      goto error;
    }
    if ((space = H5Screate_simple (2, ds_size, ds_size))<0) goto error;

    /* Predefined types cannot be committed */
    H5E_BEGIN_TRY {
      status = H5Tcommit (file, "test_named_1 (should not exist)",
                      H5T_NATIVE_INT);
    } H5E_END_TRY;
    if (status>=0) {
      H5_FAILED();
      puts ("    Predefined types should not be committable!");
      goto error;
    }

    /* Copy a predefined data type and commit the copy */
    if ((type = H5Tcopy (H5T_NATIVE_INT))<0) goto error;
    if (H5Tcommit (file, "native-int", type)<0) goto error;
    if ((status=H5Tcommitted (type))<0) goto error;
    if (0==status) {
      H5_FAILED();
      puts ("    H5Tcommitted() returned false!");
      goto error;
    }

    /* We should not be able to modify a type after it has been committed. */
    H5E_BEGIN_TRY {
      status = H5Tset_precision (type, 256);
    } H5E_END_TRY;
    if (status>=0) {
      H5_FAILED();
      puts ("    Committed type is not constant!");
      goto error;
    }

    /* We should not be able to re-commit a committed type */
    H5E_BEGIN_TRY {
      status = H5Tcommit(file, "test_named_2 (should not exist)", type);
    } H5E_END_TRY;
    if (status>=0) {
      H5_FAILED();
      puts ("    Committed types should not be recommitted!");
      goto error;
    }

    /* It should be possible to define an attribute for the named type */
    if ((attr1=H5Acreate (type, "attr1", H5T_NATIVE_UCHAR, space,
                    H5P_DEFAULT))<0) goto error;
    for (i=0; i<ds_size[0]*ds_size[1]; i++) attr_data[0][i] = (int)i;/*tricky*/
    if (H5Awrite(attr1, H5T_NATIVE_UINT, attr_data)<0) goto error;
    if (H5Aclose (attr1)<0) goto error;

    /*
     * Copying a committed type should result in a transient type which is
     * not locked.
     */
    if ((t2 = H5Tcopy (type))<0) goto error;
    if ((status=H5Tcommitted (t2))<0) goto error;
    if (status) {
      H5_FAILED();
      puts ("    Copying a named type should result in a transient type!");
      goto error;
    }
    if (H5Tset_precision (t2, 256)<0) goto error;
    if (H5Tclose (t2)<0) goto error;

    /*
     * Close the committed type and reopen it.  It should return a named type.
     */
    if (H5Tclose (type)<0) goto error;
    if ((type=H5Topen (file, "native-int"))<0) goto error;
    if ((status=H5Tcommitted (type))<0) goto error;
    if (!status) {
      H5_FAILED();
      puts ("    Opened named types should be named types!");
      goto error;
    }
    
    /* Create a dataset that uses the named type */
    if ((dset = H5Dcreate (file, "dset1", type, space, H5P_DEFAULT))<0) {
      goto error;
    }

    /* Get the dataset's data type and make sure it's a named type */
    if ((t2 = H5Dget_type (dset))<0) goto error;
    if ((status=H5Tcommitted (t2))<0) goto error;
    if (!status) {
      H5_FAILED();
      puts ("    Dataset type should be a named type!");
      goto error;
    }

    /* Close the dataset, then close its type, then reopen the dataset */
    if (H5Dclose (dset)<0) goto error;
    if (H5Tclose (t2)<0) goto error;
    if ((dset = H5Dopen (file, "dset1"))<0) goto error;

    /* Get the dataset's type and make sure it's named */
    if ((t2 = H5Dget_type (dset))<0) goto error;
    if ((status=H5Tcommitted (t2))<0) goto error;
    if (!status) {
      H5_FAILED();
      puts ("    Dataset type should be a named type!");
      goto error;
    }

    /*
     * Close the dataset and create another with the type returned from the
     * first dataset.
     */
    if (H5Dclose (dset)<0) goto error;
    if ((dset=H5Dcreate (file, "dset2", t2, space, H5P_DEFAULT))<0) {
      goto error;
    }

    /* Reopen the second dataset and make sure the type is shared */
    if (H5Tclose (t2)<0) goto error;
    if (H5Dclose (dset)<0) goto error;
    if ((dset = H5Dopen (file, "dset2"))<0) goto error;
    if ((t2 = H5Dget_type (dset))<0) goto error;
    if ((status=H5Tcommitted (t2))<0) goto error;
    if (!status) {
      H5_FAILED();
      puts ("    Dataset type should be a named type!");
      goto error;
    }
    if (H5Tclose (t2)<0) goto error;
    
    /*
     * Get the dataset data type by applying H5Tcopy() to the dataset. The
     * result should be modifiable.
     */
    if ((t2=H5Tcopy (dset))<0) goto error;
    if (H5Tset_precision (t2, 256)<0) goto error;
    if (H5Tclose (t2)<0) goto error;

    /* Clean up */
    if (H5Dclose (dset)<0) goto error;
    if (H5Tclose (type)<0) goto error;
    if (H5Sclose (space)<0) goto error;
    if (H5Fclose (file)<0) goto error;
    PASSED();
    return 0;

 error:
    H5E_BEGIN_TRY {
      H5Tclose (t2);
      H5Tclose (type);
      H5Sclose (space);
      H5Dclose (dset);
      H5Fclose (file);
    } H5E_END_TRY;
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:      mkstr
 *
 * Purpose: Create a new string data type
 *
 * Return:  Success:    New type
 *
 *          Failure:    -1
 *
 * Programmer:    Robb Matzke
 *              Monday, August 10, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static hid_t
mkstr(size_t len, H5T_str_t strpad)
{
    hid_t   t;

    if ((t=H5Tcopy(H5T_C_S1))<0) return -1;
    if (H5Tset_size(t, len)<0) return -1;
    if (H5Tset_strpad(t, strpad)<0) return -1;
    return t;
}


/*-------------------------------------------------------------------------
 * Function:      test_conv_str_1
 *
 * Purpose: Test string conversions
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Monday, August 10, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_conv_str_1(void)
{
    char    *buf=NULL;
    hid_t   src_type, dst_type;

    TESTING("string conversions");

    /*
     * Convert a null-terminated string to a shorter and longer null
     * terminated string.
     */
    src_type = mkstr(10, H5T_STR_NULLTERM);
    dst_type = mkstr(5, H5T_STR_NULLTERM);
    buf = calloc(2, 10);
    HDmemcpy(buf, "abcdefghi\0abcdefghi\0", 20);
    if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcd\0abcd\0abcdefghi\0", 20)) {
      H5_FAILED();
      puts("    Truncated C-string test failed");
      goto error;
    }
    if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcd\0\0\0\0\0\0abcd\0\0\0\0\0\0", 20)) {
      H5_FAILED();
      puts("    Extended C-string test failed");
      goto error;
    }
    free(buf);
    if (H5Tclose(src_type)<0) goto error;
    if (H5Tclose(dst_type)<0) goto error;

    /*
     * Convert a null padded string to a shorter and then longer string.
     */
    src_type = mkstr(10, H5T_STR_NULLPAD);
    dst_type = mkstr(5, H5T_STR_NULLPAD);
    buf = calloc(2, 10);
    HDmemcpy(buf, "abcdefghijabcdefghij", 20);
    if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcdeabcdeabcdefghij", 20)) {
      H5_FAILED();
      puts("    Truncated C buffer test failed");
      goto error;
    }
    if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
      H5_FAILED();
      puts("    Extended C buffer test failed");
      goto error;
    }
    free(buf);
    if (H5Tclose(src_type)<0) goto error;
    if (H5Tclose(dst_type)<0) goto error;

    /*
     * Convert a space-padded string to a shorter and then longer string.
     */
    src_type = mkstr(10, H5T_STR_SPACEPAD);
    dst_type = mkstr(5, H5T_STR_SPACEPAD);
    buf = calloc(2, 10);
    HDmemcpy(buf, "abcdefghijabcdefghij", 20);
    if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcdeabcdeabcdefghij", 20)) {
      H5_FAILED();
      puts("    Truncated Fortran-string test failed");
      goto error;
    }
    if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcde     abcde     ", 20)) {
      H5_FAILED();
      puts("    Extended Fortran-string test failed");
      goto error;
    }
    free(buf);
    if (H5Tclose(src_type)<0) goto error;
    if (H5Tclose(dst_type)<0) goto error;

    /*
     * What happens if a null-terminated string is not null terminated?  If
     * the conversion is to an identical string then nothing happens but if
     * the destination is a different size or type of string then the right
     * thing should happen.
     */
    src_type = mkstr(10, H5T_STR_NULLTERM);
    dst_type = mkstr(10, H5T_STR_NULLTERM);
    buf = calloc(2, 10);
    HDmemcpy(buf, "abcdefghijabcdefghij", 20);
    if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcdefghijabcdefghij", 20)) {
      H5_FAILED();
      puts("    Non-terminated string test 1");
      goto error;
    }
    H5Tclose(dst_type);
    dst_type = mkstr(5, H5T_STR_NULLTERM);
    HDmemcpy(buf, "abcdefghijabcdefghij", 20);
    if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcd\0abcd\0abcdefghij", 20)) {
      H5_FAILED();
      puts("    Non-terminated string test 2");
      goto error;
    }
    HDmemcpy(buf, "abcdeabcdexxxxxxxxxx", 20);
    if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
      H5_FAILED();
      puts("    Non-terminated string test 2");
      goto error;
    }
    free(buf);
    if (H5Tclose(src_type)<0) goto error;
    if (H5Tclose(dst_type)<0) goto error;
    
    /*
     * Test C string to Fortran and vice versa.
     */
    src_type = mkstr(10, H5T_STR_NULLTERM);
    dst_type = mkstr(10, H5T_STR_SPACEPAD);
    buf = calloc(2, 10);
    HDmemcpy(buf, "abcdefghi\0abcdefghi\0", 20);
    if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcdefghi abcdefghi ", 20)) {
      H5_FAILED();
      puts("    C string to Fortran test 1");
      goto error;
    }
    if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcdefghi\0abcdefghi\0", 20)) {
      H5_FAILED();
      puts("    Fortran to C string test 1");
      goto error;
    }
    if (H5Tclose(dst_type)<0) goto error;
    dst_type = mkstr(5, H5T_STR_SPACEPAD);
    HDmemcpy(buf, "abcdefgh\0\0abcdefgh\0\0", 20);
    if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcdeabcdeabcdefgh\0\0", 20)) {
      H5_FAILED();
      puts("    C string to Fortran test 2");
      goto error;
    }
    if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
      H5_FAILED();
      puts("    Fortran to C string test 2");
      goto error;
    }
    if (H5Tclose(src_type)<0) goto error;
    if (H5Tclose(dst_type)<0) goto error;
    src_type = mkstr(5, H5T_STR_NULLTERM);
    dst_type = mkstr(10, H5T_STR_SPACEPAD);
    HDmemcpy(buf, "abcd\0abcd\0xxxxxxxxxx", 20);
    if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcd      abcd      ", 20)) {
      H5_FAILED();
      puts("    C string to Fortran test 3");
      goto error;
    }
    if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcd\0abcd\0abcd      ", 20)) {
      H5_FAILED();
      puts("    Fortran to C string test 3");
      goto error;
    }
    free(buf);
    if (H5Tclose(src_type)<0) goto error;
    if (H5Tclose(dst_type)<0) goto error;
    
    /*
     * Test C buffer to Fortran and vice versa.
     */
    src_type = mkstr(10, H5T_STR_NULLPAD);
    dst_type = mkstr(10, H5T_STR_SPACEPAD);
    buf = calloc(2, 10);
    HDmemcpy(buf, "abcdefghijabcdefghij", 20);
    if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcdefghijabcdefghij", 20)) {
      H5_FAILED();
      puts("    C buffer to Fortran test 1");
      goto error;
    }
    if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcdefghijabcdefghij", 20)) {
      H5_FAILED();
      puts("    Fortran to C buffer test 1");
      goto error;
    }
    if (H5Tclose(dst_type)<0) goto error;
    dst_type = mkstr(5, H5T_STR_SPACEPAD);
    HDmemcpy(buf, "abcdefgh\0\0abcdefgh\0\0", 20);
    if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcdeabcdeabcdefgh\0\0", 20)) {
      H5_FAILED();
      puts("    C buffer to Fortran test 2");
      goto error;
    }
    if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcde\0\0\0\0\0abcde\0\0\0\0\0", 20)) {
      H5_FAILED();
      puts("    Fortran to C buffer test 2");
      goto error;
    }
    if (H5Tclose(src_type)<0) goto error;
    if (H5Tclose(dst_type)<0) goto error;
    src_type = mkstr(5, H5T_STR_NULLPAD);
    dst_type = mkstr(10, H5T_STR_SPACEPAD);
    HDmemcpy(buf, "abcd\0abcd\0xxxxxxxxxx", 20);
    if (H5Tconvert(src_type, dst_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcd      abcd      ", 20)) {
      H5_FAILED();
      puts("    C buffer to Fortran test 3");
      goto error;
    }
    if (H5Tconvert(dst_type, src_type, (hsize_t)2, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (HDmemcmp(buf, "abcd\0abcd\0abcd      ", 20)) {
      H5_FAILED();
      puts("    Fortran to C buffer test 3");
      goto error;
    }
    free(buf);
    if (H5Tclose(src_type)<0) goto error;
    if (H5Tclose(dst_type)<0) goto error;

    PASSED();
    reset_hdf5();
    return 0;

 error:
    reset_hdf5();
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:      test_conv_str_2
 *
 * Purpose: Tests C-to-Fortran and Fortran-to-C string conversion speed.
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Monday, August 10, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_conv_str_2(void)
{
    char          *buf=NULL, s[80];
    hid_t         c_type, f_type;
    const size_t  nelmts = NTESTELEM, ntests=NTESTS;
    size_t        i, j, nchars;
    int                 ret_value = 1;

    /*
     * Initialize types and buffer.
     */
    c_type = mkstr(8, H5T_STR_NULLPAD);
    f_type = mkstr(8, H5T_STR_SPACEPAD);
    buf = calloc(nelmts, 8);
    for (i=0; i<nelmts; i++) {
      nchars = rand() % 8;
      for (j=0; j<nchars; j++) {
          buf[i*8+j] = 'a' + rand()%26;
      }
      while (j<nchars) buf[i*8+j++] = '\0';
    }

    /* Do the conversions */
    for (i=0; i<ntests; i++) {
      if (ntests>1) {
          sprintf(s, "Testing random string conversion speed (test %d/%d)",
                (int)(i+1), (int)ntests);
      } else {
          sprintf(s, "Testing random string conversion speed");
      }
      printf("%-70s", s);
      fflush(stdout);
      if (H5Tconvert(c_type, f_type, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
      if (H5Tconvert(f_type, c_type, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
      PASSED();
    }
    ret_value = 0;

 error:
    if (buf) free(buf);
    reset_hdf5();
    return ret_value;
}


/*-------------------------------------------------------------------------
 * Function:      test_conv_enum_1
 *
 * Purpose: Test conversion speed for enum data types
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Tuesday, January  5, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_conv_enum_1(void)
{
    const int     nelmts=NTESTELEM, ntests=NTESTS;
    int           i, val, *buf=NULL;
    hid_t   t1, t2;
    char    s[80];
    int           ret_value = 1;

    /* Build the data types */
    t1 = H5Tcreate(H5T_ENUM, sizeof(int));
    t2 = H5Tenum_create(H5T_NATIVE_INT);
    s[1] = '\0';
    for (i=0; i<26; i++) {
      s[0] = 'A'+i;
      H5Tenum_insert(t1, s, &i);
      H5Tenum_insert(t2, s, (val=i*1000+i, &val));
    }

    /* Initialize the buffer */
    buf = malloc(nelmts*MAX(H5Tget_size(t1), H5Tget_size(t2)));
    for (i=0; i<nelmts; i++) buf[i] = rand() % 26;

    /* Conversions */
    for (i=0; i<ntests; i++) {
      if (ntests>1) {
          sprintf(s, "Testing random enum conversion O(N) (test %d/%d)",
                i+1, ntests);
      } else {
          sprintf(s, "Testing random enum conversion O(N)");
      }
      printf("%-70s", s);
      fflush(stdout);
      if (H5Tconvert(t1, t2, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
      PASSED();
    }

    for (i=0; i<ntests; i++) {
      if (ntests>1) {
          sprintf(s, "Testing random enum conversion O(N log N) "
                "(test %d/%d)", i+1, ntests);
      } else {
          sprintf(s, "Testing random enum conversion O(N log N)");
      }
      printf("%-70s", s);
      fflush(stdout);
      if (H5Tconvert(t2, t1, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;
      PASSED();
    }
    ret_value = 0;

 error:
    H5Tclose(t1);
    H5Tclose(t2);
    if (buf) free(buf);
    reset_hdf5();
    return ret_value;
}


/*-------------------------------------------------------------------------
 * Function:    test_conv_enum_2
 *
 * Purpose:     Tests enumeration conversions where source isn't a native type.
 *
 * Return:      Success:        0
 *      
 *              Failure:        number of errors
 *
 * Programmer:  Robb Matzke, LLNL, 2003-06-09
 *  
 * Modifications:
 *-------------------------------------------------------------------------
 */
static int
test_conv_enum_2(void)
{
    hid_t       srctype=-1, dsttype=-1, oddsize=-1;
    int         *data=NULL, i, nerrors=0;
    const char  *mname[] = { "RED",
                             "GREEN",
                             "BLUE",
                             "YELLOW",
                             "PINK",
                             "PURPLE",
                             "ORANGE",
                             "WHITE" };

    TESTING("non-native enumeration type conversion");

    /* Source enum type */
    oddsize = H5Tcopy(H5T_STD_I32BE);
    H5Tset_size(oddsize, 3); /*reduce to 24 bits, not corresponding to any native size*/
    srctype = H5Tenum_create(oddsize);
    for (i=7; i>=0; --i) {
        char pattern[3];
        pattern[2] = i;
        pattern[0] = pattern[1] = 0;
        H5Tenum_insert(srctype, mname[i], pattern);
    }

    /* Destination enum type */
    dsttype = H5Tenum_create(H5T_NATIVE_INT);
    assert(H5Tget_size(dsttype)>H5Tget_size(srctype));
    for (i=0; i<8; i++)
        H5Tenum_insert(dsttype, mname[i], &i);

    /* Source data */
    data = malloc(NTESTELEM*sizeof(int));
    for (i=0; i<NTESTELEM; i++) {
        ((char*)data)[i*3+2] = i % 8;
        ((char*)data)[i*3+0] = 0;
        ((char*)data)[i*3+1] = 0;
    }

    /* Convert to destination type */
    H5Tconvert(srctype, dsttype, (hsize_t)NTESTELEM, data, NULL, H5P_DEFAULT);

    /* Check results */
    for (i=0; i<NTESTELEM; i++) {
        if (data[i] != i%8) {
            if (!nerrors++) {
                H5_FAILED();
                printf("element %d is %d but should have been  %d\n",
                       i, data[i], i%8);
            }
        }
    }

    /* Cleanup */
    free(data);
    H5Tclose(srctype);
    H5Tclose(dsttype);
    H5Tclose(oddsize);

    /* Failure */
    if (nerrors) {
        printf("total of %d conversion errors out of %d elements for enums\n",
               nerrors, NTESTELEM);
        return 1;
    }
    
    PASSED();
    return 0;
}


/*-------------------------------------------------------------------------
 * Function:      test_conv_bitfield
 *
 * Purpose: Test bitfield conversions.
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Thursday, May 20, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_conv_bitfield(void)
{
    unsigned char buf[4];
    hid_t         st=-1, dt=-1;

    TESTING("bitfield conversions");

    /*
     * First test a simple bitfield conversion:
     *                   1010101010101010
     *   ________________1010101010101010
     */
    st = H5Tcopy(H5T_STD_B16LE);
    dt = H5Tcopy(H5T_STD_B32LE);
    buf[0] = buf[1] = 0xAA;
    buf[2] = buf[3] = 0x55; /*irrelevant*/
    if (H5Tconvert(st, dt, (hsize_t)1, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (buf[0]!=0xAA || buf[1]!=0xAA || buf[2]!=0 || buf[3]!=0) {
      H5_FAILED();
      printf("    s=0xaaaa, d=0x%02x%02x%02x%02x (test 1)\n",
             buf[3], buf[2], buf[1], buf[0]);
      goto error;
    }

    /*
     * Test2: Offset a 12-byte value in the middle of a 16 and 32 byte
     * field.
     *              __10 1010 1010 10__
     *    ____ ____ __10 1010 1010 10__ ____ ____
     */
    H5Tset_precision(st, 12);
    H5Tset_offset(st, 2);
    H5Tset_precision(dt, 12);
    H5Tset_offset(dt, 10);
    buf[0] = 0xA8; buf[1] = 0x2A; buf[2] = buf[3] = 0;
    if (H5Tconvert(st, dt, (hsize_t)1, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (buf[0]!=0 || buf[1]!=0xA8 || buf[2]!=0x2A || buf[3]!=0) {
      H5_FAILED();
      printf("    s=0x2AA8 d=0x%02x%02x%02x%02x (test 2)\n",
             buf[3], buf[2], buf[1], buf[0]);
      goto error;
    }

    /*
     * Same as previous test except unused bits of the destination will
     * be filled with ones.
     */
    H5Tset_pad(dt, H5T_PAD_ONE, H5T_PAD_ONE);
    buf[0] = 0xA8; buf[1] = 0x2A; buf[2] = buf[3] = 0;
    if (H5Tconvert(st, dt, (hsize_t)1, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (buf[0]!=0xff || buf[1]!=0xAB || buf[2]!=0xEA || buf[3]!=0xff) {
      H5_FAILED();
      printf("    s=0x2AA8 d=0x%02x%02x%02x%02x (test 3)\n",
             buf[3], buf[2], buf[1], buf[0]);
      goto error;
    }

    H5Tclose(st);
    H5Tclose(dt);
    PASSED();
    reset_hdf5();
    return 0;

 error:
    H5Tclose(st);
    H5Tclose(dt);
    reset_hdf5();
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:      convert_opaque
 *
 * Purpose: A fake opaque conversion functions
 *
 * Return:  Success:    0
 *
 *          Failure:    -1
 *
 * Programmer:    Robb Matzke
 *              Friday, June  4, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
convert_opaque(hid_t UNUSED st, hid_t UNUSED dt, H5T_cdata_t *cdata,
             hsize_t UNUSED nelmts, size_t UNUSED buf_stride,
               size_t UNUSED bkg_stride, void UNUSED *_buf,
             void UNUSED *bkg, hid_t UNUSED dset_xfer_plid)
{
    if (H5T_CONV_CONV==cdata->command) num_opaque_conversions_g++;
    return 0;
}


/*-------------------------------------------------------------------------
 * Function:      test_opaque
 *
 * Purpose: Test opaque datatypes
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Thursday, May 20, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_opaque(void)
{
#define OPAQUE_NELMTS 1000
    hid_t   st=-1, dt=-1;
    herr_t  status;
    char    buf[1]; /*not really used*/
    int           saved = num_opaque_conversions_g;

    TESTING("opaque datatypes");

    /* Build source and destination types */
    if ((st=H5Tcreate(H5T_OPAQUE, 4))<0) goto error;
    if (H5Tset_tag(st, "opaque source type")<0) goto error;
    if ((dt=H5Tcreate(H5T_OPAQUE, 4))<0) goto error;
    if (H5Tset_tag(dt, "opaque destination type")<0) goto error;

    /* Make sure that we can't convert between the types yet */
    H5E_BEGIN_TRY {
      status = H5Tconvert(st, dt, (hsize_t)OPAQUE_NELMTS, buf, NULL, H5P_DEFAULT);
    } H5E_END_TRY;
    if (status>=0) {
      H5_FAILED();
      printf("    opaque conversion should have failed but succeeded\n");
      goto error;
    }

    /* Register a conversion function */
    if (H5Tregister(H5T_PERS_HARD, "o_test", st, dt, convert_opaque)<0)
      goto error;

    /* Try the conversion again, this time it should work */
    if (H5Tconvert(st, dt, (hsize_t)OPAQUE_NELMTS, buf, NULL, H5P_DEFAULT)<0) goto error;
    if (saved+1 != num_opaque_conversions_g) {
      H5_FAILED();
      printf("    unexpected number of opaque conversions\n");
      goto error;
    }
    
    H5Tclose(st);
    H5Tclose(dt);
    PASSED();
    return 0;

 error:
    if (st>0) H5Tclose(st);
    if (dt>0) H5Tclose(dt);
    H5_FAILED();
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:      test_conv_int
 *
 * Purpose: Test atomic number conversions.
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Wednesday, June 10, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_conv_int (void)
{
    unsigned char byte[4];

    /*---------------------------------------------------------------------
     * Test some specific overflow/underflow cases.
     *--------------------------------------------------------------------- 
     */
    TESTING("integer overflow conversions");

    /* (unsigned)0x80000000 -> (unsigned)0xffff */
    byte[0] = byte[1] = byte[2] = 0;
    byte[3] = 0x80;
    if (H5Tconvert (H5T_STD_U32LE, H5T_STD_U16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
      goto error;
    }
    if (byte[0]!=0xff || byte[1]!=0xff) {
      H5_FAILED();
      printf("    src: 0x80000000 unsigned\n");
      printf("    dst: 0x%02x%02x     unsigned\n", byte[1], byte[0]);
      printf("    ans: 0xffff     unsigned\n");
      goto error;
    }

    /* (unsigned)0xffffffff -> (signed)0x7fff */
    byte[0] = byte[1] = byte[2] = byte[3] = 0xff;
    if (H5Tconvert (H5T_STD_U32LE, H5T_STD_I16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
      goto error;
    }
    if (byte[0]!=0xff || byte[1]!=0x7f) {
      H5_FAILED();
      printf("    src: 0xffffffff unsigned\n");
      printf("    dst: 0x%02x%02x     signed\n", byte[1], byte[0]);
      printf("    ans: 0x7fff     signed\n");
      goto error;
    }

    /* (signed)0xffffffff -> (unsigned)0x0000 */
    byte[0] = byte[1] = byte[2] = byte[3] = 0xff;
    if (H5Tconvert (H5T_STD_I32LE, H5T_STD_U16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
      goto error;
    }
    if (byte[0]!=0x00 || byte[1]!=0x00) {
      H5_FAILED();
      printf("    src: 0xffffffff signed\n");
      printf("    dst: 0x%02x%02x     unsigned\n", byte[1], byte[0]);
      printf("    ans: 0x0000     unsigned\n");
      goto error;
    }

    /* (signed)0x7fffffff -> (unsigned)0xffff */
    byte[0] = byte[1] = byte[2] = 0xff;
    byte[3] = 0x7f;
    if (H5Tconvert (H5T_STD_I32LE, H5T_STD_U16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
      goto error;
    }
    if (byte[0]!=0xff || byte[1]!=0xff) {
      H5_FAILED();
      printf("    src: 0x7fffffff signed\n");
      printf("    dst: 0x%02x%02x     unsigned\n", byte[1], byte[0]);
      printf("    ans: 0xffff     unsigned\n");
      goto error;
    }

    /* (signed)0x7fffffff -> (signed)0x7fff */
    byte[0] = byte[1] = byte[2] = 0xff;
    byte[3] = 0x7f;
    if (H5Tconvert (H5T_STD_I32LE, H5T_STD_I16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
      goto error;
    }
    if (byte[0]!=0xff || byte[1]!=0x7f) {
      H5_FAILED();
      printf("    src: 0x7fffffff signed\n");
      printf("    dst: 0x%02x%02x     signed\n", byte[1], byte[0]);
      printf("    ans: 0x7fff     signed\n");
      goto error;
    }

    /* (signed)0xbfffffff -> (signed)0x8000 */
    byte[0] = byte[1] = byte[2] = 0xff;
    byte[3] = 0xbf;
    if (H5Tconvert (H5T_STD_I32LE, H5T_STD_I16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) {
      goto error;
    }
    if (byte[0]!=0x00 || byte[1]!=0x80) {
      H5_FAILED();
      printf("    src: 0xbfffffff signed\n");
      printf("    dst: 0x%02x%02x     signed\n", byte[1], byte[0]);
      printf("    ans: 0x8000     signed\n");
      goto error;
    }

    PASSED();
    reset_hdf5();
    return 0;

 error:
    reset_hdf5();
    return 1;
}


/*-------------------------------------------------------------------------
 * Function:      test_conv_int_1
 *
 * Purpose: Test conversion of random integer values from SRC to DST.
 *          These types should be any combination of:
 *
 *                H5T_NATIVE_SCHAR  H5T_NATIVE_UCHAR
 *                H5T_NATIVE_SHORT  H5T_NATIVE_USHORT
 *                H5T_NATIVE_INT          H5T_NATIVE_UINT
 *                H5T_NATIVE_LONG         H5T_NATIVE_ULONG
 *                H5T_NATIVE_LLONG  H5T_NATIVE_ULLONG
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Monday, November 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_conv_int_1(const char *name, hid_t src, hid_t dst)
{
    const size_t  ntests=NTESTS;          /*number of tests */
    const size_t  nelmts=NTESTELEM;       /*num values per test   */
    const size_t  max_fails=8;            /*max number of failures*/
    size_t        fails_all_tests=0;      /*number of failures    */
    size_t        fails_this_test;  /*fails for this test   */
    char          str[256];         /*hello string          */
    int_t         src_type, dst_type;     /*data types            */
    const char          *src_type_name=NULL;    /*source type name      */
    const char          *dst_type_name=NULL;    /*destination type name */
    int                 endian;                 /*machine endianess     */
    size_t        src_size, dst_size;     /*type sizes            */
    unsigned char *buf=NULL;        /*buffer for conversion */
    unsigned char *saved=NULL;            /*original values */
    size_t        i, j, k;          /*counters        */
    unsigned char *hw=NULL;         /*hardware conv result  */
    unsigned char src_bits[32];           /*src value in LE order */
    unsigned char dst_bits[32];           /*dest value in LE order*/
    size_t        src_nbits;        /*source length in bits */
    size_t        dst_nbits;        /*dst length in bits    */
    void          *aligned=NULL;          /*aligned temp buffer   */
    signed char         hw_char;
    unsigned char hw_uchar;
    short         hw_short;
    unsigned short      hw_ushort;
    int                 hw_int;
    unsigned            hw_uint;
    long          hw_long;
    unsigned long hw_ulong;
    long_long           hw_llong;
    unsigned long_long  hw_ullong;
    
    
    
    /* What are the names of the source and destination types */
    if (H5Tequal(src, H5T_NATIVE_SCHAR)) {
      src_type_name = "signed char";
      src_type = INT_CHAR;
    } else if (H5Tequal(src, H5T_NATIVE_UCHAR)) {
      src_type_name = "unsigned char";
      src_type = INT_UCHAR;
    } else if (H5Tequal(src, H5T_NATIVE_SHORT)) {
      src_type_name = "short";
      src_type = INT_SHORT;
    } else if (H5Tequal(src, H5T_NATIVE_USHORT)) {
      src_type_name = "unsigned short";
      src_type = INT_USHORT;
    } else if (H5Tequal(src, H5T_NATIVE_INT)) {
      src_type_name = "int";
      src_type = INT_INT;
    } else if (H5Tequal(src, H5T_NATIVE_UINT)) {
      src_type_name = "unsigned int";
      src_type = INT_UINT;
    } else if (H5Tequal(src, H5T_NATIVE_LONG)) {
      src_type_name = "long";
      src_type = INT_LONG;
    } else if (H5Tequal(src, H5T_NATIVE_ULONG)) {
      src_type_name = "unsigned long";
      src_type = INT_ULONG;
    } else if (H5Tequal(src, H5T_NATIVE_LLONG)) {
      src_type_name = "long long";
      src_type = INT_LLONG;
    } else if (H5Tequal(src, H5T_NATIVE_ULLONG)) {
      src_type_name = "unsigned long long";
      src_type = INT_ULLONG;
    } else {
      src_type_name = "UNKNOWN";
      src_type = INT_OTHER;
    }
    
    if (H5Tequal(dst, H5T_NATIVE_SCHAR)) {
      dst_type_name = "signed char";
      dst_type = INT_CHAR;
    } else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) {
      dst_type_name = "unsigned char";
      dst_type = INT_UCHAR;
    } else if (H5Tequal(dst, H5T_NATIVE_SHORT)) {
      dst_type_name = "short";
      dst_type = INT_SHORT;
    } else if (H5Tequal(dst, H5T_NATIVE_USHORT)) {
      dst_type_name = "unsigned short";
      dst_type = INT_USHORT;
    } else if (H5Tequal(dst, H5T_NATIVE_INT)) {
      dst_type_name = "int";
      dst_type = INT_INT;
    } else if (H5Tequal(dst, H5T_NATIVE_UINT)) {
      dst_type_name = "unsigned int";
      dst_type = INT_UINT;
    } else if (H5Tequal(dst, H5T_NATIVE_LONG)) {
      dst_type_name = "long";
      dst_type = INT_LONG;
    } else if (H5Tequal(dst, H5T_NATIVE_ULONG)) {
      dst_type_name = "unsigned long";
      dst_type = INT_ULONG;
    } else if (H5Tequal(dst, H5T_NATIVE_LLONG)) {
      dst_type_name = "long long";
      dst_type = INT_LLONG;
    } else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) {
      dst_type_name = "unsigned long long";
      dst_type = INT_ULLONG;
    } else {
      dst_type_name = "UNKNOWN";
      dst_type = INT_OTHER;
    }

    /* Sanity checks */
    if (INT_OTHER==src_type || INT_OTHER==dst_type) {
      sprintf(str, "Testing random %s %s -> %s conversions",
            name, src_type_name, dst_type_name);
      printf("%-70s", str);
      H5_FAILED();
      puts("    Unknown data type.");
      goto error;
    }

    /* Allocate buffers */
    endian = H5Tget_order(H5T_NATIVE_INT);
    src_size = H5Tget_size(src);
    dst_size = H5Tget_size(dst);
    src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */
    dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */
    buf = aligned_malloc(nelmts*MAX(src_size, dst_size));
    saved = aligned_malloc(nelmts*MAX(src_size, dst_size));
    aligned = malloc(sizeof(long_long));
#ifdef SHOW_OVERFLOWS
    noverflows_g = 0;
#endif

    /* The tests */
    for (i=0; i<ntests; i++) {
      if (ntests>1) {
          sprintf(str, "Testing random %s %s -> %s conversions (test %d/%d)",
                name, src_type_name, dst_type_name, (int)i+1, (int)ntests);
      } else {
          sprintf(str, "Testing random %s %s -> %s conversions",
                name, src_type_name, dst_type_name);
      }
      printf("%-70s", str);
      fflush(stdout);
      fails_this_test=0;

      /*
       * Initialize the source buffers to random bits.  The `buf' buffer
       * will be used for the conversion while the `saved' buffer will be
       * sed for the comparison later.
       */
      for (j=0; j<nelmts*src_size; j++) buf[j] = saved[j] = rand();

      /* Perform the conversion */
      if (H5Tconvert(src, dst, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;

      /* Check the results from the library against hardware */
      for (j=0; j<nelmts; j++) {
          if (INT_CHAR==dst_type) {
            hw = (unsigned char*)&hw_char;
            switch (src_type) {
            case INT_CHAR:
                HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
                hw_char = (char)(*((signed char*)aligned));
                break;
            case INT_UCHAR:
                HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char));
                hw_char = (char)(*((unsigned char*)aligned));
                break;
            case INT_SHORT:
                HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
                hw_char = (char)(*((short*)aligned));
                break;
            case INT_USHORT:
                HDmemcpy(aligned, saved+j*sizeof(short),
                     sizeof(unsigned short));
                hw_char = (char)(*((unsigned short*)aligned));
                break;
            case INT_INT:
                HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
                hw_char = (char)(*((int*)aligned));
                break;
            case INT_UINT:
                HDmemcpy(aligned, saved+j*sizeof(unsigned),
                     sizeof(unsigned));
                hw_char = (char)(*((unsigned*)aligned));
                break;
            case INT_LONG:
                HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
                hw_char = (char)(*((long*)aligned));
                break;
            case INT_ULONG:
                HDmemcpy(aligned, saved+j*sizeof(long),
                     sizeof(unsigned long));
                hw_char = (char)(*((unsigned long*)aligned));
                break;
            case INT_LLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(long_long));
                hw_char = (char)(*((long_long*)aligned));
                break;
            case INT_ULLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(unsigned long_long));
                hw_char = (char)(*((unsigned long_long*)aligned));
                break;
            case INT_OTHER:
                break;
            }
          } else if (INT_UCHAR==dst_type) {
            hw = (unsigned char*)&hw_uchar;
            switch (src_type) {
            case INT_CHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(signed char));
                hw_uchar = (unsigned char)(*((signed char*)aligned));
                break;
            case INT_UCHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(unsigned char));
                hw_uchar = (unsigned char)(*((unsigned char*)aligned));
                break;
            case INT_SHORT:
                HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
                hw_uchar = (unsigned char)(*((short*)aligned));
                break;
            case INT_USHORT:
                HDmemcpy(aligned, saved+j*sizeof(short),
                     sizeof(unsigned short));
                hw_uchar = (unsigned char)(*((unsigned short*)aligned));
                break;
            case INT_INT:
                HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
                hw_uchar = (unsigned char)(*((int*)aligned));
                break;
            case INT_UINT:
                HDmemcpy(aligned, saved+j*sizeof(unsigned),
                     sizeof(unsigned));
                hw_uchar = (unsigned char)(*((unsigned*)aligned));
                break;
            case INT_LONG:
                HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
                hw_uchar = (unsigned char)(*((long*)aligned));
                break;
            case INT_ULONG:
                HDmemcpy(aligned, saved+j*sizeof(long),
                     sizeof(unsigned long));
                hw_uchar = (unsigned char)(*((unsigned long*)aligned));
                break;
            case INT_LLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(long_long));
                hw_uchar = (unsigned char)(*((long_long*)aligned));
                break;
            case INT_ULLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(unsigned long_long));
                hw_uchar = (unsigned char)(*((unsigned long_long*)
                                     aligned));
                break;
            case INT_OTHER:
                break;
            }
          } else if (INT_SHORT==dst_type) {
            hw = (unsigned char*)&hw_short;
            switch (src_type) {
            case INT_CHAR:
                HDmemcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
                hw_short = (short)(*((signed char*)aligned));
                break;
            case INT_UCHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(unsigned char));
                hw_short = (short)(*((unsigned char*)aligned));
                break;
            case INT_SHORT:
                HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
                hw_short = (short)(*((short*)aligned));
                break;
            case INT_USHORT:
                HDmemcpy(aligned, saved+j*sizeof(short),
                     sizeof(unsigned short));
                hw_short = (short)(*((unsigned short*)aligned));
                break;
            case INT_INT:
                HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
                hw_short = (short)(*((int*)aligned));
                break;
            case INT_UINT:
                HDmemcpy(aligned, saved+j*sizeof(unsigned),
                     sizeof(unsigned));
                hw_short = (short)(*((unsigned*)aligned));
                break;
            case INT_LONG:
                HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
                hw_short = (short)(*((long*)aligned));
                break;
            case INT_ULONG:
                HDmemcpy(aligned, saved+j*sizeof(long),
                     sizeof(unsigned long));
                hw_short = (short)(*((unsigned long*)aligned));
                break;
            case INT_LLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(long_long));
                hw_short = (short)(*((long_long*)aligned));
                break;
            case INT_ULLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(unsigned long_long));
                hw_short = (short)(*((unsigned long_long*)aligned));
                break;
            case INT_OTHER:
                break;
            }
          } else if (INT_USHORT==dst_type) {
            hw = (unsigned char*)&hw_ushort;
            switch (src_type) {
            case INT_CHAR:
                HDmemcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
                hw_ushort = (unsigned short)(*((signed char*)aligned));
                break;
            case INT_UCHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(unsigned char));
                hw_ushort = (unsigned short)(*((unsigned char*)aligned));
                break;
            case INT_SHORT:
                HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
                hw_ushort = (unsigned short)(*((short*)aligned));
                break;
            case INT_USHORT:
                HDmemcpy(aligned, saved+j*sizeof(short),
                     sizeof(unsigned short));
                hw_ushort = (unsigned short)(*((unsigned short*)aligned));
                break;
            case INT_INT:
                HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
                hw_ushort = (unsigned short)(*((int*)aligned));
                break;
            case INT_UINT:
                HDmemcpy(aligned, saved+j*sizeof(unsigned),
                     sizeof(unsigned));
                hw_ushort = (unsigned short)(*((unsigned*)aligned));
                break;
            case INT_LONG:
                HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
                hw_ushort = (unsigned short)(*((long*)aligned));
                break;
            case INT_ULONG:
                HDmemcpy(aligned, saved+j*sizeof(long),
                     sizeof(unsigned long));
                hw_ushort = (unsigned short)(*((unsigned long*)aligned));
                break;
            case INT_LLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(long_long));
                hw_ushort = (unsigned short)(*((long_long*)aligned));
                break;
            case INT_ULLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(unsigned long_long));
                hw_ushort = (unsigned short)(*((unsigned long_long*)
                                       aligned));
                break;
            case INT_OTHER:
                break;
            }
          } else if (INT_INT==dst_type) {
            hw = (unsigned char*)&hw_int;
            switch (src_type) {
            case INT_CHAR:
                HDmemcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
                hw_int = (int)(*((signed char*)aligned));
                break;
            case INT_UCHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(unsigned char));
                hw_int = (int)(*((unsigned char*)aligned));
                break;
            case INT_SHORT:
                HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
                hw_int = (int)(*((short*)aligned));
                break;
            case INT_USHORT:
                HDmemcpy(aligned, saved+j*sizeof(short),
                     sizeof(unsigned short));
                hw_int = (int)(*((unsigned short*)aligned));
                break;
            case INT_INT:
                HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
                hw_int = (int)(*((int*)aligned));
                break;
            case INT_UINT:
                HDmemcpy(aligned, saved+j*sizeof(unsigned),
                     sizeof(unsigned));
                hw_int = (int)(*((unsigned*)aligned));
                break;
            case INT_LONG:
                HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
                hw_int = (int)(*((long*)aligned));
                break;
            case INT_ULONG:
                HDmemcpy(aligned, saved+j*sizeof(long),
                     sizeof(unsigned long));
                hw_int = (int)(*((unsigned long*)aligned));
                break;
            case INT_LLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(long_long));
                hw_int = (int)(*((long_long*)aligned));
                break;
            case INT_ULLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(unsigned long_long));
                hw_int = (int)(*((unsigned long_long*)aligned));
                break;
            case INT_OTHER:
                break;
            }
          } else if (INT_UINT==dst_type) {
            hw = (unsigned char*)&hw_uint;
            switch (src_type) {
            case INT_CHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(signed char));
                hw_uint = (unsigned int)(*((signed char*)aligned));
                break;
            case INT_UCHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(unsigned char));
                hw_uint = (unsigned int)(*((unsigned char*)aligned));
                break;
            case INT_SHORT:
                HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
                hw_uint = (unsigned int)(*((short*)aligned));
                break;
            case INT_USHORT:
                HDmemcpy(aligned, saved+j*sizeof(short),
                     sizeof(unsigned short));
                hw_uint = (unsigned int)(*((unsigned short*)aligned));
                break;
            case INT_INT:
                HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
                hw_uint = (unsigned int)(*((int*)aligned));
                break;
            case INT_UINT:
                HDmemcpy(aligned, saved+j*sizeof(unsigned),
                     sizeof(unsigned));
                hw_uint = (unsigned int)(*((unsigned*)aligned));
                break;
            case INT_LONG:
                HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
                hw_uint = (unsigned int)(*((long*)aligned));
                break;
            case INT_ULONG:
                HDmemcpy(aligned, saved+j*sizeof(long),
                     sizeof(unsigned long));
                hw_uint = (unsigned int)(*((unsigned long*)aligned));
                break;
            case INT_LLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(long_long));
                hw_uint = (unsigned int)(*((long_long*)aligned));
                break;
            case INT_ULLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(unsigned long_long));
                hw_uint = (unsigned int)(*((unsigned long_long*)aligned));
                break;
            case INT_OTHER:
                break;
            }
          } else if (INT_LONG==dst_type) {
            hw = (unsigned char*)&hw_long;
            switch (src_type) {
            case INT_CHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(signed char));
                hw_long = (long int)(*((signed char*)aligned));
                break;
            case INT_UCHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(unsigned char));
                hw_long = (long int)(*((unsigned char*)aligned));
                break;
            case INT_SHORT:
                HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
                hw_long = (long int)(*((short*)aligned));
                break;
            case INT_USHORT:
                HDmemcpy(aligned, saved+j*sizeof(short),
                     sizeof(unsigned short));
                hw_long = (long int)(*((unsigned short*)aligned));
                break;
            case INT_INT:
                HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
                hw_long = (long int)(*((int*)aligned));
                break;
            case INT_UINT:
                HDmemcpy(aligned, saved+j*sizeof(unsigned),
                     sizeof(unsigned));
                hw_long = (long int)(*((unsigned*)aligned));
                break;
            case INT_LONG:
                HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
                hw_long = (long int)(*((long*)aligned));
                break;
            case INT_ULONG:
                HDmemcpy(aligned, saved+j*sizeof(long),
                     sizeof(unsigned long));
                hw_long = (long int)(*((unsigned long*)aligned));
                break;
            case INT_LLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(long_long));
                hw_long = (long int)(*((long_long*)aligned));
                break;
            case INT_ULLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(unsigned long_long));
                hw_long = (long int)(*((unsigned long_long*)aligned));
                break;
            case INT_OTHER:
                break;
            }
          } else if (INT_ULONG==dst_type) {
            hw = (unsigned char*)&hw_ulong;
            switch (src_type) {
            case INT_CHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(signed char));
                hw_ulong = (unsigned long)(*((signed char*)aligned));
                break;
            case INT_UCHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(unsigned char));
                hw_ulong = (unsigned long)(*((unsigned char*)aligned));
                break;
            case INT_SHORT:
                HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
                hw_ulong = (unsigned long)(*((short*)aligned));
                break;
            case INT_USHORT:
                HDmemcpy(aligned, saved+j*sizeof(short),
                     sizeof(unsigned short));
                hw_ulong = (unsigned long)(*((unsigned short*)aligned));
                break;
            case INT_INT:
                HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
                hw_ulong = (unsigned long)(*((int*)aligned));
                break;
            case INT_UINT:
                HDmemcpy(aligned, saved+j*sizeof(unsigned),
                     sizeof(unsigned));
                hw_ulong = (unsigned long)(*((unsigned*)aligned));
                break;
            case INT_LONG:
                HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
                hw_ulong = (unsigned long)(*((long*)aligned));
                break;
            case INT_ULONG:
                HDmemcpy(aligned, saved+j*sizeof(long),
                     sizeof(unsigned long));
                hw_ulong = (unsigned long)(*((unsigned long*)aligned));
                break;
            case INT_LLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(long_long));
                hw_ulong = (unsigned long)(*((long_long*)aligned));
                break;
            case INT_ULLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(unsigned long_long));
                hw_ulong = (unsigned long)(*((unsigned long_long*)
                                     aligned));
                break;
            case INT_OTHER:
                break;
            }
          } else if (INT_LLONG==dst_type) {
            hw = (unsigned char*)&hw_llong;
            switch (src_type) {
            case INT_CHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(signed char));
                hw_llong = (long_long)(*((signed char*)aligned));
                break;
            case INT_UCHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(unsigned char));
                hw_llong = (long_long)(*((unsigned char*)aligned));
                break;
            case INT_SHORT:
                HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
                hw_llong = (long_long)(*((short*)aligned));
                break;
            case INT_USHORT:
                HDmemcpy(aligned, saved+j*sizeof(short),
                     sizeof(unsigned short));
                hw_llong = (long_long)(*((unsigned short*)aligned));
                break;
            case INT_INT:
                HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
                hw_llong = (long_long)(*((int*)aligned));
                break;
            case INT_UINT:
                HDmemcpy(aligned, saved+j*sizeof(unsigned),
                     sizeof(unsigned));
                hw_llong = (long_long)(*((unsigned*)aligned));
                break;
            case INT_LONG:
                HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
                hw_llong = (long_long)(*((long*)aligned));
                break;
            case INT_ULONG:
                HDmemcpy(aligned, saved+j*sizeof(long),
                     sizeof(unsigned long));
                hw_llong = (long_long)(*((unsigned long*)aligned));
                break;
            case INT_LLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(long_long));
                hw_llong = (long_long)(*((long_long*)aligned));
                break;
            case INT_ULLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(unsigned long_long));
                hw_llong = (long_long)(*((unsigned long_long*)aligned));
                break;
            case INT_OTHER:
                break;
            }
          } else if (INT_ULLONG==dst_type) {
            hw = (unsigned char*)&hw_ullong;
            switch (src_type) {
            case INT_CHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(signed char));
                hw_ullong = (unsigned long_long)(*((signed char*)
                                           aligned));
                break;
            case INT_UCHAR:
                HDmemcpy(aligned, saved+j*sizeof(char),
                     sizeof(unsigned char));
                hw_ullong = (unsigned long_long)(*((unsigned char*)
                                           aligned));
                break;
            case INT_SHORT:
                HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
                hw_ullong = (unsigned long_long)(*((short*)aligned));
                break;
            case INT_USHORT:
                HDmemcpy(aligned, saved+j*sizeof(short),
                     sizeof(unsigned short));
                hw_ullong = (unsigned long_long)(*((unsigned short*)
                                           aligned));
                break;
            case INT_INT:
                HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
                hw_ullong = (unsigned long_long)(*((int*)aligned));
                break;
            case INT_UINT:
                HDmemcpy(aligned, saved+j*sizeof(unsigned),
                     sizeof(unsigned));
                hw_ullong = (unsigned long_long)(*((unsigned*)aligned));
                break;
            case INT_LONG:
                HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
                hw_ullong = (unsigned long_long)(*((long*)aligned));
                break;
            case INT_ULONG:
                HDmemcpy(aligned, saved+j*sizeof(long),
                     sizeof(unsigned long));
                hw_ullong = (unsigned long_long)(*((unsigned long*)
                                           aligned));
                break;
            case INT_LLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(long_long));
                hw_ullong = (unsigned long_long)(*((long_long*)aligned));
                break;
            case INT_ULLONG:
                HDmemcpy(aligned, saved+j*sizeof(long_long),
                     sizeof(unsigned long_long));
                hw_ullong = (unsigned long_long)(*((unsigned long_long*)
                                           aligned));
                break;
            case INT_OTHER:
                break;
            }
          }

        /* Make certain that there isn't some weird number of destination bits */
        assert(dst_nbits%8==0);

          /* Are the two results the same */
        for (k=(dst_size-(dst_nbits/8)); k<dst_size; k++) {
            if (buf[j*dst_size+k]!=hw[k]) break;
          }
          if (k==dst_size) continue; /*no error*/

          /*
           * Convert the source and destination values to little endian
           * order so we can use the HDF5 bit vector operations to test
           * certain things.  These routines have already been tested by
           * the `bittests' program.
           */
          for (k=0; k<src_size; k++) {
            src_bits[src_size-(k+1)] = saved[j*src_size+
                                     ENDIAN(src_size, k)];
          }
          
          for (k=0; k<dst_size; k++) {
            dst_bits[dst_size-(k+1)] = buf[j*dst_size+
                                     ENDIAN(dst_size, k)];
          }


          /*
           * Hardware usually doesn't handle overflows too gracefully. The
           * hardware conversion result during overflows is usually garbage
           * so we must handle those cases differetly when checking results.
           */
          if (H5T_SGN_2==H5Tget_sign(src) && H5T_SGN_2==H5Tget_sign(dst)) {
            if (src_nbits>dst_nbits) {
                if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
                    H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits),
                        H5T_BIT_MSB, 1)>=0) {
                    /*
                     * Source is positive and the magnitude is too large for
                     * the destination.  The destination should be set to the
                     * maximum possible value: 0x7f...f
                     */
                    if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
                            H5T_bit_find(dst_bits, 0, dst_nbits-1,
                                 H5T_BIT_LSB, 0)<0) {
                        continue; /*no error*/
                    }
                } else if (1==H5T_bit_get_d(src_bits, src_nbits-1, 1) &&
                   H5T_bit_find(src_bits, 0, src_nbits-1, H5T_BIT_MSB,
                        0)+1>=(ssize_t)dst_nbits) {
                    /*
                     * Source is negative but the magnitude is too large for
                     * the destination. The destination should be set to the
                     * smallest possible value: 0x80...0
                     */
                    if (1==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
                            H5T_bit_find(dst_bits, 0, dst_nbits-1,
                                 H5T_BIT_LSB, 1)<0) {
                        continue; /*no error*/
                    }
                }
            } else if(src_nbits<dst_nbits) {
                /* Source is smaller than the destination */
                if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1)) {
                    /*
                     * Source is positive, so the excess bits in the
                     * destination should be set to 0's.
                     */
                    if (0==H5T_bit_get_d(dst_bits, src_nbits-1, 1) &&
                            H5T_bit_find(dst_bits, src_nbits, dst_nbits-src_nbits,
                                 H5T_BIT_LSB, 1)<0) {
                        continue; /*no error*/
                    }
                } else {
                    /*
                     * Source is negative, so the excess bits in the
                     * destination should be set to 1's.
                     */
                    if (1==H5T_bit_get_d(dst_bits, src_nbits-1, 1) &&
                            H5T_bit_find(dst_bits, src_nbits, dst_nbits-src_nbits,
                                 H5T_BIT_LSB, 0)<0) {
                        continue; /*no error*/
                    }
                }
            }
          } else if (H5T_SGN_2==H5Tget_sign(src) && H5T_SGN_NONE==H5Tget_sign(dst)) {
            if (H5T_bit_get_d(src_bits, src_nbits-1, 1)) {
                /*
                 * The source is negative so the result should be zero.
                 * The source is negative if the most significant bit is
                 * set.  The destination is zero if all bits are zero.
                 */
                if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 1)<0)
                    continue; /*no error*/
            } else if (src_nbits>dst_nbits &&
                   H5T_bit_find(src_bits, dst_nbits-1,
                        src_nbits-dst_nbits, H5T_BIT_LSB,
                        1)>=0) {
                /*
                 * The source is a value with a magnitude too large for
                 * the destination.  The destination should be the
                 * largest possible value: 0xff...f
                 */
                if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0) {
                    continue; /*no error*/
                }
            }
            
          } else if (H5T_SGN_NONE==H5Tget_sign(src) && H5T_SGN_2==H5Tget_sign(dst)) {
            if (src_nbits>=dst_nbits &&
                    H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits)+1,
                        H5T_BIT_LSB, 1)>=0) {
                /*
                 * The source value has a magnitude that is larger than
                 * the destination can handle.  The destination should be
                 * set to the largest possible positive value: 0x7f...f
                 */
                if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) &&
                        H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0) {
                    continue; /*no error*/
                }
            }
            
          } else {
            if (src_nbits>dst_nbits &&
                H5T_bit_find(src_bits, dst_nbits, src_nbits-dst_nbits,
                     H5T_BIT_LSB, 1)>=0) {
                /*
                 * The unsigned source has a value which is too large for
                 * the unsigned destination.  The destination should be
                 * set to the largest possible value: 0xff...f
                 */
                if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0) {
                    continue; /*no error*/
                }
            }
          }

          /* Print errors */
          if (0==fails_this_test++) H5_FAILED();
          printf("    test %u elmt %u\n", (unsigned)i+1, (unsigned)j);

          printf("        src = ");
          for (k=0; k<src_size; k++) {
            printf(" %02x", saved[j*src_size+ENDIAN(src_size, k)]);
          }
          printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)),
               "");
          switch (src_type) {
          case INT_CHAR:
            HDmemcpy(aligned, saved+j*sizeof(char), sizeof(signed char));
            printf(" %29d\n", *((signed char*)aligned));
            break;
          case INT_UCHAR:
            HDmemcpy(aligned, saved+j*sizeof(char), sizeof(unsigned char));
            printf(" %29u\n", *((unsigned char*)aligned));
            break;
          case INT_SHORT:
            HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short));
            printf(" %29hd\n", *((short*)aligned));
            break;
          case INT_USHORT:
            HDmemcpy(aligned, saved+j*sizeof(short),
                   sizeof(unsigned short));
            printf(" %29hu\n", *((unsigned short*)aligned));
            break;
          case INT_INT:
            HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int));
            printf(" %29d\n", *((int*)aligned));
            break;
          case INT_UINT:
            HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned));
            printf(" %29u\n", *((unsigned*)aligned));
            break;
          case INT_LONG:
            HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long));
            printf(" %29ld\n", *((long*)aligned));
            break;
          case INT_ULONG:
            HDmemcpy(aligned, saved+j*sizeof(long), sizeof(unsigned long));
            printf(" %29lu\n", *((unsigned long*)aligned));
            break;
          case INT_LLONG:
            HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long));
            HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
            break;
          case INT_ULLONG:
            HDmemcpy(aligned, saved+j*sizeof(long_long),
                   sizeof(unsigned long_long));
            HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n",
                   *((unsigned long_long*)aligned));
            break;
          case INT_OTHER:
            break;
          }
          
          printf("        dst = ");
          for (k=0; k<dst_size; k++) {
            printf(" %02x", buf[j*dst_size+ENDIAN(dst_size, k)]);
          }
          printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
               "");
          switch (dst_type) {
          case INT_CHAR:
            HDmemcpy(aligned, buf+j*sizeof(char), sizeof(signed char));
            printf(" %29d\n", *((signed char*)aligned));
            break;
          case INT_UCHAR:
            HDmemcpy(aligned, buf+j*sizeof(char), sizeof(unsigned char));
            printf(" %29u\n", *((unsigned char*)aligned));
            break;
          case INT_SHORT:
            HDmemcpy(aligned, buf+j*sizeof(short), sizeof(short));
            printf(" %29d\n", *((short*)aligned));
            break;
          case INT_USHORT:
            HDmemcpy(aligned, buf+j*sizeof(short), sizeof(unsigned short));
            printf(" %29u\n", *((unsigned short*)aligned));
            break;
          case INT_INT:
            HDmemcpy(aligned, buf+j*sizeof(int), sizeof(int));
            printf(" %29d\n", *((int*)aligned));
            break;
          case INT_UINT:
            HDmemcpy(aligned, buf+j*sizeof(unsigned), sizeof(unsigned));
            printf(" %29u\n", *((unsigned*)aligned));
            break;
          case INT_LONG:
            HDmemcpy(aligned, buf+j*sizeof(long), sizeof(long));
            printf(" %29ld\n", *((long*)aligned));
            break;
          case INT_ULONG:
            HDmemcpy(aligned, buf+j*sizeof(long), sizeof(unsigned long));
            printf(" %29lu\n", *((unsigned long*)aligned));
            break;
          case INT_LLONG:
            HDmemcpy(aligned, buf+j*sizeof(long_long), sizeof(long_long));
            HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned));
            break;
          case INT_ULLONG:
            HDmemcpy(aligned, buf+j*sizeof(long_long),
                   sizeof(unsigned long_long));
            HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n",
                   *((unsigned long_long*)aligned));
            break;
          case INT_OTHER:
            break;
          }
          
          printf("        ans = ");
          for (k=0; k<dst_size; k++) {
            printf(" %02x", hw[ENDIAN(dst_size, k)]);
          }
          printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
               "");
          switch (dst_type) {
          case INT_CHAR:
            printf(" %29d\n", *((signed char*)hw));
            break;
          case INT_UCHAR:
            printf(" %29u\n", *((unsigned char*)hw));
            break;
          case INT_SHORT:
            printf(" %29d\n", *((short*)hw));
            break;
          case INT_USHORT:
            printf(" %29u\n", *((unsigned short*)hw));
            break;
          case INT_INT:
            printf(" %29d\n", *((int*)hw));
            break;
          case INT_UINT:
            printf(" %29u\n", *((unsigned*)hw));
            break;
          case INT_LONG:
            printf(" %29ld\n", *((long*)hw));
            break;
          case INT_ULONG:
            printf(" %29lu\n", *((unsigned long*)hw));
            break;
          case INT_LLONG:
            HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)hw));
            break;
          case INT_ULLONG:
            HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)hw));
            break;
          case INT_OTHER:
            break;
          }

          if (++fails_all_tests>=max_fails) {
            puts("    maximum failures reached, aborting test...");
            goto done;
          }
      }
      PASSED();
    }
#ifdef SHOW_OVERFLOWS
    if (noverflows_g>0) {
      printf("    %d overflow%s in previous test\n",
             noverflows_g, 1==noverflows_g?"":"s");
    }
#endif

 done:
    if (buf) aligned_free(buf);
    if (saved) aligned_free(saved);
    if (aligned) free(aligned);
    fflush(stdout);
    reset_hdf5(); /*print statistics*/
    return (int)fails_all_tests;

 error:
    if (buf) aligned_free(buf);
    if (saved) aligned_free(saved);
    if (aligned) free(aligned);
    fflush(stdout);
    reset_hdf5(); /*print statistics*/
    return MAX((int)fails_all_tests, 1);
}


/*-------------------------------------------------------------------------
 * Function:      test_conv_int_2
 *
 * Purpose: Tests overlap calculates in H5T_conv_i_i(), which should be
 *          the same as for H5T_conv_f_f() and H5T_conv_s_s().
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Friday, April 30, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_conv_int_2(void)
{
    int           i, j;
    hid_t   src_type, dst_type;
    char    buf[32*100];

    printf("%-70s", "Testing overlap calculations");
    fflush(stdout);
    
    memset(buf, 0, sizeof buf);
    for (i=1; i<=32; i++) {
      for (j=1; j<=32; j++) {

          /* Source type */
          src_type = H5Tcopy(H5T_NATIVE_CHAR);
          H5Tset_size(src_type, (size_t)i);

          /* Destination type */
          dst_type = H5Tcopy(H5T_NATIVE_CHAR);
          H5Tset_size(dst_type, (size_t)j);

          /*
           * Conversion. If overlap calculations aren't right then an
           * assertion will fail in H5T_conv_i_i()
           */
          H5Tconvert(src_type, dst_type, (hsize_t)100, buf, NULL, H5P_DEFAULT);
          H5Tclose(src_type);
          H5Tclose(dst_type);
      }
    }
    PASSED();
    return 0;
}


/*-------------------------------------------------------------------------
 * Function:      my_isnan
 *
 * Purpose: Determines whether VAL points to NaN.
 *
 * Return:  TRUE or FALSE
 *
 * Programmer:    Robb Matzke
 *              Monday, July  6, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
my_isnan(flt_t type, void *val)
{
    int retval;
    char s[256];

    if (FLT_FLOAT==type) {
      float x;
      HDmemcpy(&x, val, sizeof(float));
      retval = (x!=x);
    } else if (FLT_DOUBLE==type) {
      double x;
      HDmemcpy(&x, val, sizeof(double));
      retval = (x!=x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
    } else if (FLT_LDOUBLE==type) {
      long double x;
      HDmemcpy(&x, val, sizeof(long double));
      retval = (x!=x);
#endif
    } else {
      return 0;
    }

    /*
     * Sometimes NaN==NaN (e.g., DEC Alpha) so we try to print it and see if
     * the result contains a NaN string.
     */
    if (!retval) {
      if (FLT_FLOAT==type) {
          float x;
          HDmemcpy(&x, val, sizeof(float));
          sprintf(s, "%g", x);
      } else if (FLT_DOUBLE==type) {
          double x;
          HDmemcpy(&x, val, sizeof(double));
          sprintf(s, "%g", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
      } else if (FLT_LDOUBLE==type) {
          long double x;
          HDmemcpy(&x, val, sizeof(long double));
          sprintf(s, "%Lg", x);
#endif
      } else {
          return 0;
      }
      if (strstr(s, "NaN") || strstr(s, "NAN") || strstr(s, "nan"))
          retval = 1;
    }

    return retval;
}


/*-------------------------------------------------------------------------
 * Function:      test_conv_flt_1
 *
 * Purpose: Test conversion of random floating point values from SRC to
 *          DST.  These types should be H5T_NATIVE_FLOAT,
 *          H5T_NATIVE_DOUBLE, or H5T_NATIVE_LDOUBLE.
 *
 * Return:  Success:    0
 *
 *          Failure:    number of errors
 *
 * Programmer:    Robb Matzke
 *              Tuesday, June 23, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
test_conv_flt_1 (const char *name, hid_t src, hid_t dst)
{
    flt_t         src_type, dst_type;     /*data types            */
    const size_t  ntests=NTESTS;          /*number of tests */
    const size_t  nelmts=NTESTELEM;       /*num values per test   */
    const size_t  max_fails=8;            /*max number of failures*/
    size_t        fails_all_tests=0;      /*number of failures    */
    size_t        fails_this_test;  /*fails for this test   */
    const char          *src_type_name = NULL;  /*source type name      */
    const char          *dst_type_name = NULL;  /*destination type name */
    size_t        src_size, dst_size;     /*type sizes            */
    unsigned char *buf = NULL;            /*buffer for conversion */
    unsigned char *saved = NULL;          /*original values */
    char          str[256];         /*hello string          */
    float         hw_f;             /*hardware-converted    */
    double        hw_d;             /*hardware-converted    */
    void          *aligned=NULL;          /*aligned buffer  */
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
    long double         hw_ld;                  /*hardware-converted    */
#endif
    unsigned char *hw=NULL;         /*ptr to hardware-conv'd*/
    size_t        i, j, k;          /*counters        */
    int                 endian;                 /*machine endianess     */
    size_t        src_ebias;        /* Source type's exponent bias */
    size_t        dst_ebias;        /* Destination type's exponent bias */
    size_t        src_epos;         /* Source type's exponent position */
    size_t        src_esize;        /* Source type's exponent size */
    size_t        dst_epos;         /* Destination type's exponent position */
    size_t        dst_esize;        /* Destination type's exponent size */
    size_t        dst_msize;        /* Destination type's mantissa size */

#ifdef HANDLE_SIGFPE
    pid_t         child_pid;        /*process ID of child   */
    int                 status;                 /*child exit status     */
    
    /*
     * Some systems generage SIGFPE during floating point overflow and we
     * cannot assume that we can continue from such a signal.  Therefore, we
     * fork here and let the child run the test and return the number of
     * failures with the exit status.
     */
    fflush(stdout);
    fflush(stderr);
    if ((child_pid=fork())<0) {
      perror("fork");
      return 1;
    } else if (child_pid>0) {
      while (child_pid!=waitpid(child_pid, &status, 0)) /*void*/;
      if (WIFEXITED(status) && 255==WEXITSTATUS(status)) {
          return 0; /*child exit after catching SIGFPE*/
      } else if (WIFEXITED(status)) {
          return WEXITSTATUS(status);
      } else {
          puts("   Child didn't exit normally.");
          return 1;
      }
    }
#endif

    /*
     * The remainder of this function is executed only by the child if
     * HANDLE_SIGFPE is defined.
     */
#ifndef __WATCOMC__
    signal(SIGFPE,fpe_handler);
#endif

    /* What are the names of the source and destination types */
    if (H5Tequal(src, H5T_NATIVE_FLOAT)) {
      src_type_name = "float";
      src_type = FLT_FLOAT;
    } else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) {
      src_type_name = "double";
      src_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
    } else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) {
      src_type_name = "long double";
      src_type = FLT_LDOUBLE;
#endif
    } else {
      src_type_name = "UNKNOWN";
      src_type = FLT_OTHER;
    }
    
    if (H5Tequal(dst, H5T_NATIVE_FLOAT)) {
      dst_type_name = "float";
      dst_type = FLT_FLOAT;
    } else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) {
      dst_type_name = "double";
      dst_type = FLT_DOUBLE;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
    } else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) {
      dst_type_name = "long double";
      dst_type = FLT_LDOUBLE;
#endif
    } else {
      dst_type_name = "UNKNOWN";
      dst_type = FLT_OTHER;
    }

    /* Sanity checks */
    if(sizeof(float)==sizeof(double))
        puts("Sizeof(float)==sizeof(double) - some tests may not be sensible.");
    if (FLT_OTHER==src_type || FLT_OTHER==dst_type) {
      sprintf(str, "Testing random %s %s -> %s conversions",
            name, src_type_name, dst_type_name);
      printf("%-70s", str);
      H5_FAILED();
      puts("    Unknown data type.");
      goto error;
    }
    
    /* Allocate buffers */
    endian = H5Tget_order(H5T_NATIVE_FLOAT);
    src_size = H5Tget_size(src);
    dst_size = H5Tget_size(dst);
    buf   = aligned_malloc(nelmts*MAX(src_size, dst_size));
    saved = aligned_malloc(nelmts*MAX(src_size, dst_size));
    aligned = malloc(16); /*should be big enough for any type*/
#ifdef SHOW_OVERFLOWS
    noverflows_g = 0;
#endif

    /* Get "interesting" values */
    src_ebias=H5Tget_ebias(src);
    dst_ebias=H5Tget_ebias(dst);
    H5Tget_fields(src,NULL,&src_epos,&src_esize,NULL,NULL);
    H5Tget_fields(dst,NULL,&dst_epos,&dst_esize,NULL,&dst_msize);

    for (i=0; i<ntests; i++) {

      /*
       * If it looks like it might take a long time then print a progress
       * report between each test.
       */
      if (ntests>1) {
          sprintf(str, "Testing random %s %s -> %s conversions (test %d/%d)",
                name, src_type_name, dst_type_name, (int)i+1, (int)ntests);
      } else {
          sprintf(str, "Testing random %s %s -> %s conversions",
                name, src_type_name, dst_type_name);
      }
      printf("%-70s", str);
      fflush(stdout);
      fails_this_test = 0;

      /*
       * Initialize the source buffers to random bits.  The `buf' buffer
       * will be used for the conversion while the `saved' buffer will be
       * used for the comparison later.
       */
      if (!skip_overflow_tests_g) {
          for (j=0; j<nelmts*src_size; j++) buf[j] = saved[j] = rand();
      } else {
          for (j=0; j<nelmts; j++) {
            /* Do it this way for alignment reasons */
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
            long double temp[1];
#else
            double temp[1];
#endif
            if (src_size<=dst_size) {
                for (k=0; k<dst_size; k++) buf[j*src_size+k] = rand();
            } else {
                for (k=0; k<dst_size; k++) {
                  ((unsigned char*)temp)[k] = rand();
                }
                if (FLT_DOUBLE==src_type && FLT_FLOAT==dst_type) {
                  hw_d = *((float*)temp);
                  HDmemcpy(buf+j*src_size, &hw_d, src_size);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
                } else if (FLT_LDOUBLE==src_type && FLT_FLOAT==dst_type) {
                  hw_ld = *((float*)temp);
                  HDmemcpy(buf+j*src_size, &hw_ld, src_size);
                } else if (FLT_LDOUBLE==src_type && FLT_DOUBLE==dst_type) {
                  hw_ld = *((double*)temp);
                  HDmemcpy(buf+j*src_size, &hw_ld, src_size);
#endif
                }
            }
            HDmemcpy(saved+j*src_size, buf+j*src_size, src_size);
          }
      }

      /* Perform the conversion in software */
      if (H5Tconvert(src, dst, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error;

      /* Check the software results against the hardware */
      for (j=0; j<nelmts; j++) {
          hw_f = 911.0;
          hw_d = 911.0;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
          hw_ld = 911.0;
#endif

          /* The hardware conversion */
          if (FLT_FLOAT==src_type) {
            HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float));
            if (FLT_FLOAT==dst_type) {
                hw_f = *((float*)aligned);
                hw = (unsigned char*)&hw_f;
            } else if (FLT_DOUBLE==dst_type) {
                hw_d = *((float*)aligned);
                hw = (unsigned char*)&hw_d;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
            } else {
                hw_ld = *((float*)aligned);
                hw = (unsigned char*)&hw_ld;
#endif
            }
          } else if (FLT_DOUBLE==src_type) {
            HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double));
            if (FLT_FLOAT==dst_type) {
                hw_f = (float)(*((double*)aligned));
                hw = (unsigned char*)&hw_f;
            } else if (FLT_DOUBLE==dst_type) {
                hw_d = *((double*)aligned);
                hw = (unsigned char*)&hw_d;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
            } else {
                hw_ld = *((double*)aligned);
                hw = (unsigned char*)&hw_ld;
#endif
            }
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
          } else {
            HDmemcpy(aligned, saved+j*sizeof(long double),
                   sizeof(long double)); 
            if (FLT_FLOAT==dst_type) {
                hw_f = *((long double*)aligned); 
                hw = (unsigned char*)&hw_f;
            } else if (FLT_DOUBLE==dst_type) {
                hw_d = *((long double*)aligned); 
                hw = (unsigned char*)&hw_d;
            } else {
                hw_ld = *((long double*)aligned);
                hw = (unsigned char*)&hw_ld;
            }
#endif
          }

          /* Are the two results the same? */
          for (k=0; k<dst_size; k++) {
            if (buf[j*dst_size+k]!=hw[k]) break;
          }
          if (k==dst_size) continue; /*no error*/

          /*
           * Assume same if both results are NaN.  There are many NaN bit
           * patterns and the software doesn't attemt to emulate the
           * hardware in this regard.  Instead, software uses a single bit
           * pattern for NaN by setting the significand to all ones.
           */
          if (FLT_FLOAT==dst_type &&
            my_isnan(dst_type, buf+j*sizeof(float)) &&
            my_isnan(dst_type, hw)) {
            continue;
          } else if (FLT_DOUBLE==dst_type &&
                   my_isnan(dst_type, buf+j*sizeof(double)) &&
                   my_isnan(dst_type, hw)) {
            continue;
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
          } else if (FLT_LDOUBLE==dst_type &&
                   my_isnan(dst_type, buf+j*sizeof(long double)) &&
                   my_isnan(dst_type, hw)) {
            continue;
#endif
          }

          /*
           * Assume same if hardware result is NaN.  This is because the
           * hardware conversions on some machines return NaN instead of
           * overflowing to +Inf or -Inf or underflowing to +0 or -0.
           */
          if (my_isnan(dst_type, hw))
                continue;

          /*
           * Instead of matching down to the bit, just make sure the
           * exponents are the same and the mantissa is the same to a
           * certain precision.  This is needed on machines that don't
           * round as expected.
           */
          {
            double            check_mant[2];
            int         check_expo[2];
            
            if (FLT_FLOAT==dst_type) {
                float x;
                HDmemcpy(&x, &buf[j*dst_size], sizeof(float));
                check_mant[0] = HDfrexpf(x, check_expo+0);
                check_mant[1] = HDfrexpf(hw_f, check_expo+1);
            } else if (FLT_DOUBLE==dst_type) {
                double x;
                HDmemcpy(&x, &buf[j*dst_size], sizeof(double));
                check_mant[0] = HDfrexp(x, check_expo+0);
                check_mant[1] = HDfrexp(hw_d, check_expo+1);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
            } else {
                long double x;
                HDmemcpy(&x, &buf[j*dst_size], sizeof(long double));
                check_mant[0] = HDfrexpl(x, check_expo+0);
                check_mant[1] = HDfrexpl(hw_ld, check_expo+1);
#endif
            }
#ifdef H5_CONVERT_DENORMAL_FLOAT
            /* Special check for denormalized values */
            if(check_expo[0]<(-(int)dst_ebias) || check_expo[1]<(-(int)dst_ebias)) {
                int expo_diff=check_expo[0]-check_expo[1];
                int valid_bits=((dst_ebias+dst_msize)+MIN(check_expo[0],check_expo[1]))-1;
                double epsilon=1.0;

                /* Re-scale the mantissas based on any exponent difference */
                if(expo_diff!=0)
                    check_mant[0] = HDldexp(check_mant[0],expo_diff);

                /* Compute the proper epsilon */
                epsilon=HDldexp(epsilon,-valid_bits);

                /* Check for "close enough" fit with scaled epsilon value */
                if (HDfabs(check_mant[0]-check_mant[1])<=epsilon)
                    continue;
            } /* end if */
            else {
                if (check_expo[0]==check_expo[1] &&
                            HDfabs(check_mant[0]-check_mant[1])<FP_EPSILON)
                    continue;
            } /* end else */
#else /* H5_CONVERT_DENORMAL_FLOAT */
                {
                hssize_t      expo;             /*exponent              */
                uint8_t tmp[32];

                assert(src_size<=sizeof(tmp));
                if(endian==H5T_ORDER_LE)
                    HDmemcpy(tmp,&saved[j*src_size],src_size);
                else
                    for (k=0; k<src_size; k++)
                        tmp[k]=saved[j*src_size+(src_size-(k+1))];
                expo = H5T_bit_get_d(tmp, src_epos, src_esize);
                if(expo==0)
                    continue;   /* Denormalized floating-point value detected */
                else {
                    assert(dst_size<=sizeof(tmp));
                    if(endian==H5T_ORDER_LE)
                        HDmemcpy(tmp,&buf[j*dst_size],dst_size);
                    else
                        for (k=0; k<dst_size; k++)
                            tmp[k]=buf[j*dst_size+(dst_size-(k+1))];
                    expo = H5T_bit_get_d(tmp, dst_epos, dst_esize);
                    if(expo==0)
                        continue;   /* Denormalized floating-point value detected */
                    else {
                        if (check_expo[0]==check_expo[1] &&
                                HDfabs(check_mant[0]-check_mant[1])<FP_EPSILON)
                            continue;
                    } /* end else */
                } /* end else */
                }
#endif /* H5_CONVERT_DENORMAL_FLOAT */
          }

          if (0==fails_this_test++) H5_FAILED();
          printf("    test %u, elmt %u\n", (unsigned)i+1, (unsigned)j);
          
          printf("        src =");
          for (k=0; k<src_size; k++) {
            printf(" %02x", saved[j*src_size+ENDIAN(src_size,k)]);
          }
          printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)),
               "");
          if (FLT_FLOAT==src_type) {
            float x;
            HDmemcpy(&x, &saved[j*dst_size], sizeof(float));
            printf(" %29.20e\n", x);
          } else if (FLT_DOUBLE==src_type) {
            double x;
            HDmemcpy(&x, &saved[j*dst_size], sizeof(double));
            printf(" %29.20e\n", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
          } else {
            long double x;
            HDmemcpy(&x, &saved[j*src_size], sizeof(long double));
            HDfprintf(stdout," %29.20Le\n", x);
#endif
          }

          printf("        dst =");
          for (k=0; k<dst_size; k++) {
            printf(" %02x", buf[j*dst_size+ENDIAN(dst_size,k)]);
          }
          printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
               "");
          if (FLT_FLOAT==dst_type) {
            float x;
            HDmemcpy(&x, &buf[j*dst_size], sizeof(float));
            printf(" %29.20e\n", x);
          } else if (FLT_DOUBLE==dst_type) {
            double x;
            HDmemcpy(&x, &buf[j*dst_size], sizeof(double));
            printf(" %29.20e\n", x);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
          } else {
            long double x;
            HDmemcpy(&x, &buf[j*dst_size], sizeof(long double));
            HDfprintf(stdout," %29.20Le\n", x);
#endif
          }

          printf("        ans =");
          for (k=0; k<dst_size; k++) {
            printf(" %02x", hw[ENDIAN(dst_size,k)]);
          }
          printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)),
               "");
          if (FLT_FLOAT==dst_type) {
            printf(" %29.20e\n", hw_f);
          } else if (FLT_DOUBLE==dst_type) {
            printf(" %29.20e\n", hw_d);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
          } else {
            HDfprintf(stdout," %29.20Le\n", hw_ld);
#endif
          }

          if (++fails_all_tests>=max_fails) {
            puts("    maximum failures reached, aborting test...");
            goto done;
          }
      }
      PASSED();
    }
#ifdef SHOW_OVERFLOWS
    if (noverflows_g>0) {
      printf("   %d overflow%s in previous test\n",
             noverflows_g, 1==noverflows_g?"":"s");
    }
#endif

 done:
    if (buf) aligned_free(buf);
    if (saved) aligned_free(saved);
    if (aligned) free(aligned);
    fflush(stdout);
#ifdef HANDLE_SIGFPE
    exit(MIN((int)fails_all_tests, 254));
#else
    reset_hdf5();
    return (int)fails_all_tests;
#endif

 error:
    if (buf) aligned_free(buf);
    if (saved) aligned_free(saved);
    if (aligned) free(aligned);
    fflush(stdout);
#ifdef HANDLE_SIGFPE
    exit(MIN(MAX((int)fails_all_tests, 1), 254));
#else
    reset_hdf5();
    return MAX((int)fails_all_tests, 1);
#endif
}


/*-------------------------------------------------------------------------
 * Function:      run_integer_tests
 *
 * Purpose: Runs all integer tests.
 *
 * Return:  Number of errors
 *
 * Programmer:    Robb Matzke
 *              Tuesday, November 24, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
run_integer_tests(const char *name)
{
    int           nerrors = 0;

    nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_SHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_USHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_INT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
    nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
    nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LLONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULLONG);
#endif

    nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_USHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_INT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
    nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
    nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LLONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULLONG);
#endif

    nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_SCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_USHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_INT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
    nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
    nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LLONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULLONG);
#endif

    nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_INT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
    nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
    nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LLONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULLONG);
#endif

    nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_USHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
    nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
    nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LLONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULLONG);
#endif

    nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_UCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_USHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_INT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
    nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULONG);
#endif
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
    nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LLONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULLONG);
#endif

#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
    nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_USHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_INT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UINT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULONG);
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
    nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_LLONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULLONG);
#endif
#endif

#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_USHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_INT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UINT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LONG);
#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LLONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_ULLONG);
#endif
#endif

#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
    nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_USHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_INT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
    nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_LONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULONG);
#endif
    nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULLONG);
#endif

#if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UCHAR);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_USHORT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_INT);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UINT);
#if H5_SIZEOF_LONG!=H5_SIZEOF_INT
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LONG);
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_ULONG);
#endif
    nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LLONG);
#endif

    return nerrors;
}


/*-------------------------------------------------------------------------
 * Function:    main
 *
 * Purpose:     Test the data type interface.
 *
 * Return:      Success:        
 *
 *              Failure:        
 *
 * Programmer:  Robb Matzke
 *              Tuesday, December  9, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
int
main(void)
{
    unsigned long nerrors = 0;
    hid_t         fapl=-1;

    /* Set the random # seed */
    HDsrandom((unsigned long)time(NULL));

    reset_hdf5();
    fapl = h5_fileaccess();

    if (ALIGNMENT) {
      printf("Testing non-aligned conversions (ALIGNMENT=%d)....\n",
             ALIGNMENT);
    }
    
    /* Do the tests */
    nerrors += test_classes();
    nerrors += test_copy();
    nerrors += test_detect();
    nerrors += test_compound_1();
    nerrors += test_query();
    nerrors += test_transient (fapl);
    nerrors += test_named (fapl);
    h5_cleanup(FILENAME, fapl); /*must happen before first reset*/
    reset_hdf5();

    nerrors += test_conv_str_1();
    nerrors += test_conv_str_2();
    nerrors += test_compound_2();
    nerrors += test_compound_3();
    nerrors += test_compound_4();
    nerrors += test_compound_5();
    nerrors += test_compound_6();
    nerrors += test_compound_7();
    nerrors += test_compound_8();
    nerrors += test_conv_int ();
    nerrors += test_conv_enum_1();
    nerrors += test_conv_enum_2();
    nerrors += test_conv_bitfield();
    nerrors += test_opaque();

    /* Does floating point overflow generate a SIGFPE? */
    generates_sigfpe();

    /* Test degenerate cases */
    nerrors += test_conv_flt_1("noop", H5T_NATIVE_FLOAT, H5T_NATIVE_FLOAT);
    nerrors += test_conv_flt_1("noop", H5T_NATIVE_DOUBLE, H5T_NATIVE_DOUBLE);

    /* Test hardware integer conversion functions */
    nerrors += run_integer_tests("hw");

    /* Test hardware floating-point conversion functions */
    nerrors += test_conv_flt_1("hw", H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
    nerrors += test_conv_flt_1("hw", H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);

    /*----------------------------------------------------------------------
     * Software tests
     *---------------------------------------------------------------------- 
     */
    without_hardware_g = TRUE;
    reset_hdf5();

    /* Test software integer conversion functions */
    nerrors += test_conv_int_2();
    nerrors += run_integer_tests("sw");

    /* Test software floating-point conversion functions */
    nerrors += test_conv_flt_1("sw", H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE);
    nerrors += test_conv_flt_1("sw", H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT);
#if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE
    nerrors += test_conv_flt_1("sw", H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE);
    nerrors += test_conv_flt_1("sw", H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE);
    nerrors += test_conv_flt_1("sw", H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT);
    nerrors += test_conv_flt_1("sw", H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE);
#endif
    
    if (nerrors) {
        printf("***** %lu FAILURE%s! *****\n",
               nerrors, 1==nerrors?"":"S");
        exit(1);
    }
    printf("All data type tests passed.\n");
    return 0;
}

Generated by  Doxygen 1.6.0   Back to index